Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gene ; 831: 146576, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35568340

RESUMO

Abdominal aortic aneurysms (AAA) are pathological dilations in local aortic wall. The inflammatory infiltrates of the perivascular adipose tissue (PAT) surrounding AAAs were associated with AAAs and have been shown to contribute vascular pathology. However, the mechanism by which PAT inflammation contributes to vascular pathology in AAA remains to be clarified. This study aimed to explore the association between immune cell infiltration and key gene expression profile in PAT of AAA. For that, a gene expression dataset of human dilated perivascular adipose tissue (dPAT), non-dilated perivascular adipose tissue (ndPAT), subcutaneous abdominal fat (SAF) and omental-visceral fat (OVF) samples, as well as another microarray dataset of the abdominal perivascular adipose tissue in peripheral artery disease patients were downloaded from GEO database for analysis in this study. The CIBERSORT algorithm, weighted gene co-expression network analysis (WGCNA) and LASSO algorithm were used for the identification of immune infiltration, immune-related genes and the development of diagnostic signature. Our data discovered a significant higher proportion of activated mast cells and follicular helper T (Tfh) cells in dPAT than ndPAT, OVT and SAF samples. Moreover, AP-1 family members (FOS, FOSB, ATF3, JUN and JUNB) were found to compose the hub genes of purple module in WGCNA. Among them, FOS gene acts as a higher efficient marker to discriminate dPAT from ndPAT, OVT and SAF in AAA. Meanwhile, the expression profiles of the AP-1 family members are all significantly positive correlated with activated mast cell, plasma cell and Tfh cell infiltration in dPAT of AAA. Therefore, in the PAT surrounding AAA, the signature of inflammatory infiltration might be represented by a FOS-dominated cell network consist of activated mast cell, plasma cell and Tfh cell. Given the complicated etiology of AAA, our results are likely to shed new light on the pathophysiologic mechanism of AAA influenced by the local dPAT.


Assuntos
Aneurisma da Aorta Abdominal , Proteínas Proto-Oncogênicas c-fos/genética , Tecido Adiposo/metabolismo , Aneurisma da Aorta Abdominal/metabolismo , Genes fos , Humanos , Fator de Transcrição AP-1/genética , Transcriptoma
2.
Front Pharmacol ; 12: 739658, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539418

RESUMO

Mangostin, which has the function of anti-inflammatory, antioxidant, and anticancer, etc, is one of the main active ingredients of the hull of the mangosteen. The main objective of the study was to elucidate its anti-cancer function and possible mechanism. α-Mangostin was separated and structurally confirmed. MTT method was used to check the effect of mangostin on breast cancer cell proliferation. Then the effect of α-Mangostin on the transcriptional activity of RXRα was tested by dual-luciferase reporter gene assay. And Western blot (WB) was used to detect the expression of apoptosis-related proteins or cell cycle-associated proteins after treatment. Also, this study was to observe the effects of α-Mangostin on the invasion of breast cancer cell line MDA-MB-231. α-Mangostin regulates the downstream effectors of the PI3K/AKT signaling pathway by degrading RXRα/tRXRα. α-Mangostin can trigger PARP cleavage and induce apoptosis, which may be related to the induction of upregulated BAX expression and downregulation of BAD and cleaved caspase-3 expression in MDA-MB-231 cells through blockade of AKT signaling. The experiments verify that α-Mangostin have evident inhibition effects of invasion and metastasis of MDA-MB-231 cells. Cyclin D1 was involved in the anticancer effects of α-Mangostin on the cell cycle in MDA-MB-231 cells. α-Mangostin induces apoptosis, suppresses the migration and invasion of breast cancer cells through the PI3K/AKT signaling pathway by targeting RXRα, and cyclin D1 has involved in this process.

3.
Front Immunol ; 9: 2063, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254640

RESUMO

During the entire processes of thymus organogenesis, maturation, and involution, gene regulation occurs post-transcriptionally via recently discovered microRNA (miRNA) transcripts. Numerous reports indicate that miRNAs may be involved in the construction of a normal thymic microenvironment, which constitutes a critical component to support T lymphocyte development. MiRNAs are also expressed in thymic stromal cells including thymic epithelial cells (TECs) during maturation and senescence. This review focuses on the function of miRNAs in thymic development and involution. A better understanding of these processes will provide new insights into the regulatory network of TECs and further comprehension of how genes control TECs to maintain the thymic microenvironment during thymus development and aging, thus supporting a normal cellular immune system.


Assuntos
Microambiente Celular/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Celular , MicroRNAs/imunologia , Linfócitos T/imunologia , Timo/imunologia , Animais , Humanos , Linfócitos T/citologia , Timo/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA