Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 470: 134156, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565015

RESUMO

While antimony (Sb) and arsenic (As) co-contamination in subsurface soil systems due to the legacy of Sb smelting wastes has been documented, the role of inherent heterogeneity on pollutant migration is largely overlooked. Herein this study investigated Sb and As migration in a slag impacted, vertically stratified subsurface at an abandoned Sb smelter. A 2-dimensional flume was assembled as a lab-scale analogue of the site and subject to rainfall and stop-rain events. Reactive transport modeling was then performed by matching the experimental observations to verify the key factors and processes controlling pollutant migration. Results showed that rainfall caused Sb and As release from the shallow slag layer and promoted their downward movement. Nevertheless, the less permeable deeper layers limited physical flow and transport, which led to Sb and As accumulation at the interface. The re-adsorption of Sb and As onto iron oxides in the deeper, more acidic layers further retarded their migration. Because of the large difference between Sb and As concentrations, Sb re-adsorption was much less effective, which led to higher mobility. Our findings overall highlight the necessity of understanding the degree and impacts of physicochemical heterogeneity for risk exposure assessment and remediation of abandoned Sb smelting sites.

2.
Environ Sci Pollut Res Int ; 31(20): 29631-29643, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581634

RESUMO

River water quality is closely related to the major ion sources and hydrological conditions. However, there is a limited cognition about the geochemical sources and the seasonal variations of major ions. Thus, in this study, a total of 90 water samples were collected from the Longjiang River and its three tributaries in the dry and wet seasons. The samples were analyzed, including major ion concentrations and physicochemical parameters. Statistical analysis, such as correlation analysis and principal component analysis (PCA), was employed to investigate the spatial and seasonal variations in major ion composition and their respective sources. Our study revealed that the predominant major ions in the studied samples are Ca2+, Mg2+, HCO - 3, and SO2 - 4. Most of ions exhibited notable spatial disparities attributable to variations in geological settings and human activities. Regions characterized by igneous rock outcrops tend to exhibit higher levels of K+ and Na+, while areas with higher population densities in the middle and downstream segments show elevated concentrations of Cl-, NO - 3, SO2 - 4, Na+, and K+. The observed peak SO2 - 4 levels may be attributed to active mining operations. Most parameters displayed higher values in flood season than those in dry season due to dilution effects. Stoichiometric analysis indicated that carbonate weathering inputs contribute to over 85% of the mean total cation concentrations in the water, followed by contributions from silicates, atmospheric deposition, and anthropogenic inputs. On the whole, although the water quality remains non-polluted and is suitable for drinking and irrigation purposes, the enrichment of SO2 - 4 and NO - 3 may contribute to water eutrophication. Caution is warranted during the dry season due to reduced water flow resulting from dam interceptions and limited dilution capacity, potentially leading to elevated pollutant concentrations. Taken together, our results provided a scientific basis for water quality managements of monsoon rivers.


Assuntos
Monitoramento Ambiental , Íons , Rios , Estações do Ano , Poluentes Químicos da Água , China , Rios/química , Íons/análise , Poluentes Químicos da Água/análise , Qualidade da Água , Análise de Componente Principal
3.
Sci Total Environ ; 924: 171429, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38442750

RESUMO

The growth of pioneer plants in metal mining area soil is closely related to their minimal uptake of toxic elements. Pioneer plants can inhibit the uptake of toxic elements by increasing nutrient uptake. However, few studies have focused on the mechanisms by which the rhizosphere microbiome affect nutrient cycling and their impact on the uptake of toxic elements by pioneer plants. In this study, we selected Blechnum orientale to investigate the potential roles of the rhizosphere microbiome in nutrient cycling and plant growth in a historical tungsten (W) mining area. Our results showed that while the arsenic (As) and W contents in the soil were relatively high, the enrichment levels of As and W in the B. orientale were relatively low. Furthermore, we found that the As and W contents in plants were significantly negatively correlated with soil nutrients (S, P and Mo), suggesting that elevated levels of these soil nutrients could inhibit As and W uptake by B. orientale. Importantly, we found that these nutrients were also identified as the most important factors shaping rhizosphere microbial attributes, including microbial diversity, ecological clusters, and keystone OTUs. Moreover, the genera, keystone taxa and microbial functional genes enriched in the rhizosphere soils from mining areas played a key role in nutrient (S, P and Mo) bioavailability, which could further increase the nutrient uptake by B. orientale. Taken together, our results suggest that rhizosphere microorganisms can improve pioneer plant growth by inhibiting toxic element accumulation via the increase in nutrient cycling in former W mining areas.


Assuntos
Arsênio , Gleiquênias , Microbiota , Traqueófitas , Arsênio/análise , Tungstênio , Rizosfera , Solo , Plantas , Mineração , Microbiologia do Solo
4.
J Hazard Mater ; 454: 131553, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37148795

RESUMO

The controlling factors of antimony migration and transformation in soil profiles are still unclear. Antimony isotopes might be a useful tool to trace it. In this paper, antimony isotopic compositions of plant and smelter-derived samples, and two soil profiles were measured for the first time. The δ123Sb values of the surface and bottom layers of the two soil profiles varied in 0.23‰-1.19‰ and 0.58‰-0.66‰, respectively, while δ123Sb of the smelter-derived samples varied in 0.29‰-0.38‰. The results show that the antimony isotopic compositions in the soil profiles are affected by post-depositional biogeochemical processes. The enrichment and loss of light isotopes at 0-10 cm and 10-40 cm layers of the contrasted soil profile may be controlled by plant uptake process. The loss and enrichment of heavy isotopes in the 0-10 cm and 10-25 cm layers of the antimony from smelting source in the polluted soil profile may be controlled by the adsorption process, while the enrichment of light isotopes in the 25-80 cm layer may be related to the reductive dissolution process. The conclusion emphasizes that the promotion of the Sb isotope fractionation mechanism will play a crucial role in understanding the migration and transformation behaviors of Sb in soil systems.

5.
Environ Sci Pollut Res Int ; 30(28): 72160-72170, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37166727

RESUMO

Hydroxyapatite (HAP) is a promising adsorbent for immobilizing heavy metals in soil and water. However, the preparation and modification of HAP from pure chemicals increases its cost and limits its large-scale practical application. In this study, a hydroxyapatite-based adsorbent (HAPPT) was prepared from phosphate tailing produced in the phosphorus industry to sequester Pb, Cd and Zn from solution. The results showed that HAPPT was composed of HAP and MgO, with a surface area of 27.74 m2/g. The kinetics studies showed that most Pb and Cd were removed from the initial solution in 4 h and the adsorption of Zn increased with increasing contact time. Metals presented higher adsorption capacities at 35 °C than that at 25 °C. The adsorption isotherms showed that HAPPT presented high adsorption capacities for Pb, Cd and Zn in mono-metal solutions. The adsorption capacity of Cd at pH 6 was higher than that at pH 3, but the adsorption for Pb and Zn was similar at both pHs. HAPPT has selectivity for Pb in Pb-Cd-Zn multi-metals solution, and competitive adsorption reduced the adsorption quantity by 53%, 93% and 79% for Pb, Cd and Zn, respectively. The combined results of TEM-EDS, XRD and XPS showed that Pb was immobilized by forming phosphates due to the dissolution of HAP, whereas Cd and Zn were immobilized by forming hydroxide precipitates resulting from the function of MgO in HAPPT. The results of this study provided an efficient adsorbent for the removal of heavy metals in solution and provided a new perspective on the recycling of phosphate tailings in the phosphorus industry.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Cádmio , Durapatita , Chumbo , Óxido de Magnésio , Cátions , Adsorção , Fósforo , Concentração de Íons de Hidrogênio
6.
Environ Pollut ; 324: 121383, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36870598

RESUMO

Planting rice (Oryza sativa L.) in As-contaminated paddy soils can lead to accumulation of arsenic (As) in rice grains, while the application of phosphorus (P) fertilizers during rice growth may aggravate the accumulation effect. However, remediating flooding As-contaminated paddy soils with conventional Fe(III) oxides/hydroxides can hardly achieve the goals of effectively reducing grain As and maintaining the utilization efficiency of phosphate (Pi) fertilizers simultaneously. In the present study, schwertmannite was proposed to remediate flooding As-contaminated paddy soil because of its strong sorption capacity for soil As, and its effect on the utilization efficiency of Pi fertilizer was investigated. Results of a pot experiment showed that Pi fertilization along with schwertmannite amendment was effective to reduce the mobility of As in the contaminated paddy soil and meanwhile increase soil P availability. The schwertmannite amendment along with Pi fertilization reduced the content of P in Fe plaque on rice roots, compared with the corresponding amount of Pi fertilizer alone, which can be attributed to the change in mineral composition of Fe plaque mainly induced by schwertmannite amendment. Such reduction in P retention on Fe plaque was beneficial for improving the utilization efficiency of Pi fertilizer. In particular, amending flooding As-contaminated paddy soil with schwertmannite and Pi fertilizer together has reduced the content of As in rice grains from 1.06 to 1.47 mg/kg to only 0.38-0.63 mg/kg and significantly increased the shoot biomass of rice plants. Therefore, using schwertmannite to remediate flooding As-contaminated paddy soils can achieve the dual goals of effectively reducing grain As and maintaining the utilization efficiency of P fertilizers.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Fertilizantes/análise , Arsênio/análise , Solo , Compostos Férricos/farmacologia , Poluentes do Solo/análise , Cádmio/análise
7.
J Hazard Mater ; 448: 130898, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36731323

RESUMO

Heavy metal(loid) contaminations caused by mine activities are potential hot spots of antibiotic resistance genes (ARGs) because of heavy metal(loid)-induced co-selection of ARGs and heavy metal(loid) resistance genes (MRGs). This study used high-throughput metagenomic sequencing to analyze the resistome characteristics of a coal source acid mine drainage passive treatment system. The multidrug efflux mechanism dominated the antibiotic resistome, and a highly diverse heavy metal(loid) resistome was dominated by mercury-, iron-, and arsenic--associated resistance. Correlation analysis indicated that mobile gene elements had a greater influence on the dynamic of MRGs than ARGs. Among the metagenome-assembled genomes, six potential pathogens carrying multiple resistance genes resistant to several antibiotics and heavy metal(loid)s were recovered. Pseudomonas spp. contained the highest numbers of resistance genes, with resistance to two types of antibiotics and 12 types of heavy metal(loid)s. Thus, high contents of heavy metal(loid)s drove the co-selection of ARGs and MRGs. The occurrence of potential pathogens containing multiple resistance genes might increase the risk of ARG dissemination in the environment.


Assuntos
Metagenoma , Metais Pesados , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Antibacterianos/farmacologia
8.
Environ Res ; 216(Pt 2): 114573, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36243050

RESUMO

Tungsten (W) is a critical material that is widely used in military applications, electronics, lighting technology, power engineering and the automotive and aerospace industries. In recent decades, overexploitation of W has generated large amounts of mine waste rocks, which generate elevated content of toxic elements and cause serious adverse effects on ecosystems and public health. Microorganisms are considered important players in toxic element migrations from waste rocks. However, the understanding of how the microbial community structure varies in W mine waste rocks and its key driving factors is still unknown. In this study, high-throughput sequencing methods were used to determine the microbial community profiles along a W content gradient in W mine waste rocks. We found that the microbial community structures showed clear differences across the different W levels in waste rocks. Notably, arsenic (As), instead of W and nutrients, was identified as the most important predictor influencing microbial diversity. Furthermore, our results also showed that As is the most important environmental factor that regulates the distribution patterns of ecological clusters and keystone ASVs. Importantly, we found that the dominant genera have been regulated by As and were widely involved in As biogeochemical cycling in waste rocks. Taken together, our results have provided useful information about the response of microbial communities to W mine waste rocks.


Assuntos
Arsênio , Microbiota , Tungstênio
9.
Ecotoxicol Environ Saf ; 246: 114145, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36215884

RESUMO

Long-term combustion of low-quality coal may release hazardous elements into the environment causing serious environmental problems. This phenomenon is particularly prevalent in the Three Gorges Region of Southwest (SW), China. Cadmium (Cd), as well as other harmful elements are found to be highly enriched in coals and supergene environments in this area. In the existing literature, the behavioral issue of emission and transformation of the elevated trace elements during simulated household stove combustion from Cd-rich inferior coal remains unknown. This study investigated the emission of toxic elements, mineral assemblages, and provided technical guidance for reducing pollution by means of optimization combustion tests on inferior coals. The research may improve the understanding of geochemical characteristics from toxic elements emission in coal combustion endemic diseased areas. For this purpose, a series of simulated coal combustion experiments were conducted to reveal the release, mobility, and distribution of elevated elements in Cd-rich coal combustion products. The results showed that Cd, Mo, Cr, Cu, Zn, As, and Sb were significantly enriched in the inferior coals of the study area. Furthermore, large amounts of toxic elements were released as fly ash into the environment during the combustion process. In particular, combustion conditions played an important role in the emission and transformation of elevated elements. For example, higher temperatures promoted the release of Cd, Sb, Zn, and Tl into the environment. Oxygen-deficient combustion was found to liberate more Cd, Sb, and Tl to the atmosphere and generated complex mineral assemblages of lizardite, calcite, dolomite, forsterite, and enstatite. Moreover, toxic elements were found to be absorbed in the fine particle matter of fly ash from the endemic fluorosis area of SW, China. The findings of this work may aid to control the emission of toxic elements from inferior coals and mitigate the effect of toxic elements in the environment to protect human health.


Assuntos
Carvão Mineral , Oligoelementos , Humanos , Carvão Mineral/análise , Cádmio , Cinza de Carvão/análise , Minerais , China
10.
Sci Total Environ ; 852: 158447, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36075435

RESUMO

The concentration and speciation of endogenous cadmium (Cd) in soil systems derived from parent materials is continuously altered by rock-soil-plant interactions. Previous studies on the distribution of Cd primarily focused on surface soil at regional scale. However, it lacks a novel approach to provide a new perspective on dynamics and redistribution of Cd in soil profile. Therefore, this study tries to establish the linkage between isotope fractionation and environmental processes of Cd in soil profiles with geogenic Cd enrichment based on Cd isotopes. High Cd concentrations were observed in the profile from forest at accumulation zone and the one from farmland at ridge in a rural area, southwest China. Soil erosion and deposition substantially influence the vertical distribution of total Cd in soil from the accumulation zone. Accordingly, distinct Cd isotope compositions were observed in different layers (δ114/110Cd: -0.087 ‰ to -0.066 ‰ vs -0.325 ‰ to -0.056 ‰). Mineral transformation, pedogenesis and biological activities controlled the dynamics and redistribution of Cd. The mobility of Cd increased during weathering processes, with ~40 % to 60 % of Cd residing in exchangeable fraction in the surface layers. Biological activity is a vital factor that drives Cd isotope fractionation in soil, resulting in depletion of heavy Cd isotopes in surface layers of the studied farmland profile. Contrasting fractionation effects were observed in profiles from forest and farmland due to the variance in soil-plant Cd cycling. Our study revealed the processes that control dynamics and redistribution of endogenous Cd in soil profiles, and proved that Cd isotope is a useful tool to investigate the bio-geochemical processes of Cd in soil systems.


Assuntos
Poluentes do Solo , Solo , Solo/química , Cádmio/análise , Isótopos , Poluentes do Solo/análise , Fracionamento Químico
11.
Appl Microbiol Biotechnol ; 106(18): 6289-6299, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36002692

RESUMO

Metal(loid) selection contributes to selection pressure on antibiotic resistance, but to our knowledge, evidence of the dissemination of antibiotic resistance genes (ARGs) induced by metal(loid)s in mine soil ecosystems is rare. In the current study, using a high-throughput sequencing (HTS)-based metagenomic approach, 819 ARG subtypes were identified in a mine soil ecosystem, indicating that these environmental habitats are important reservoirs of ARGs. The results showed that metal(loid)-induced coselection has an important role in the distribution of soil ARGs. Furthermore, metal(loid) selection-induced ARGs were mainly associated with resistance-nodulation-division (RND) antibiotic efflux, which is distinct from what is observed in agricultural soil ecosystems. By using independent genome binning, metal(loid)s were shown impose coselection pressure on multiple ARGs residing on mobile genetic elements (MGEs), which promotes the dissemination of the antibiotic resistome. Interestingly, the current results showed that the density of several MGEs conferring ARGs was considerably higher in organisms most closely related to the priority pathogens Pseudomonas aeruginosa and Escherichia coli. Together, the results of this study indicate that mine soil ecosystems are important reservoirs of ARGs and that metal(loid)-induced coselection plays critical roles in the dissemination of ARGs in this type of soil habitat. KEY POINTS: • Mining soil ecosystem is a reservoir of antibiotic resistance genes (ARGs). • ARGs distribute via bacterial resistance-nodulation-division efflux systems. • Metal(loid)s coselected ARGs residing on mobile genetic elements in P. aeruginosa and E. coli.


Assuntos
Proteínas de Escherichia coli , Solo , Antibacterianos/farmacologia , Proteínas de Ciclo Celular/genética , Resistência Microbiana a Medicamentos/genética , Ecossistema , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Genes Bacterianos , Microbiologia do Solo
12.
J Environ Manage ; 321: 115832, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35973291

RESUMO

Biochar application is not only being widely promoted as an ideal strategy to mitigate global climate warming, but it also has the advantage of reducing heavy metal bioavailability and migration in the soil. However, studies on the effects of field aging on biochar to reduce heavy metals from the soil are still limited. The present study aimed to explore the effects and mechanisms of aged biochar added to the soil planted with pepper plants on cadmium (Cd) uptake. To achieve this, un-amended soil (control), soil amended with fresh biochar, and aged biochar (biochar recovered from a long-term field trial after 9 years) were used to investigate the effects of field aging on biochar adsorption efficiency. The results revealed that the amount of Cd in the plant planted in control soil, amended with fresh and aged biochar, accounted for 40 ± 6.10, 17.18 ± 1.19, and 18.68 ± 0.79, respectively. There was a significant difference (P < 0.05) in the amount of Cd that was uptaken by plants among all treatments. However, soil amended with fresh biochar significantly (P < 0.05) decreased the amount of Cd in plants compared with soil amended with aged biochar. This indicates that field aging declines the potential of biochar to lower heavy metal bioavailability and retention in the soil. This study demonstrates that long-term burial lessens the ability of biochar to interact with Cd and suggests that biochar amendment can lower Cd in the soil, depending on the freshness and aging of biochar.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/análise , Carvão Vegetal , Plantas , Solo , Poluentes do Solo/análise
13.
J Environ Manage ; 317: 115425, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35751250

RESUMO

Pollution of arsenic (As) in acid mine drainage (AMD) is a universal environmental problem. The weathering of pyrite (FeS2) and other sulfide minerals leads to the generation of AMD and accelerates the leaching of As from sulfide minerals. Pyrite can undergo adsorption and redox reactions with As, affecting the existing form and biotoxicity of As. However, the interaction process between As and pyrite in AMD under sunlight radiation remains unclear. Here, we found that the oxidation and immobilization of arsenite (As(III)) on pyrite can be obviously promoted by the reactive oxygen species (ROS) in sunlit AMD, particularly by OH. The reactions between hole-electron pairs and water/oxygen adsorbed on excited pyrite resulted in the production of H2O2, OH and O2-, and OH was also generated through the photo-Fenton reaction of Fe2+/FeOH2+. Weakly crystalline schwertmannite formed from the oxidation of Fe2+ ions by OH contributed much to the adsorption and immobilization of As. In the mixed system of pyrite (0.75 g L-1), Fe2+ (56.08 mg L-1) and As(III) (1.0 mg L-1) at initial pH 3.0, the decrease ratio of dissolved total As concentration was 1.6% under dark conditions, while it significantly increased to 69.0% under sunlight radiation. The existence of oxygen or increase in initial pH from 2.0 to 4.0 accelerated As(III) oxidation and immobilization due to the oxidation of more Fe2+ and production of more ROS. The present work shows that sunlight significantly affects the transformation and migration of As in AMD, and provides new insights into the environmental behaviors of As.


Assuntos
Arsênio , Ácidos , Compostos Ferrosos , Peróxido de Hidrogênio , Ferro , Compostos de Ferro , Minerais/química , Oxirredução , Oxigênio , Espécies Reativas de Oxigênio , Sulfetos/química
14.
J Hazard Mater ; 433: 128716, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35358816

RESUMO

The weathering of arsenopyrite is closely related to the generation of acid mine drainage (AMD) and arsenic (As) pollution. Solar radiation can accelerate arsenopyrite oxidation, but little is known about the further effect of SO42- on the photochemical process. Here, the photooxidation of arsenopyrite was investigated in the presence of SO42- in simulated AMD environments, and the effects of SO42- concentration, pH and dissolved oxygen on arsenopyrite oxidation were studied as well. SO42- could accelerate the photooxidation of arsenopyrite and As(III) through complexation between nascent schwertmannite and As(III). Fe(II) released from arsenopyrite was oxidized to form schwertmannite in the presence of SO42-, and the photooxidation of arsenopyrite occurred through the ligand-to-metal charge-transfer process in schwertmannite-As(III) complex along with the formation of reactive oxygen species in the presence of O2. The photooxidation rate of arsenopyrite first rose and then fell with increasing SO42- concentration. In the pH range of 2.0-4.0, the photooxidation rate of arsenopyrite progressively increased in the presence of SO42-. This study reveals how SO42- promotes the photooxidation of arsenopyrite and As release in the AMD environment, and improves the understanding of the transformation and migration of As in mining areas.


Assuntos
Arsênio , Compostos de Ferro , Arsenicais , Concentração de Íons de Hidrogênio , Minerais , Oxirredução , Sulfatos , Sulfetos
15.
Environ Sci Pollut Res Int ; 29(24): 36243-36254, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35060028

RESUMO

The enrichment of cadmium (Cd) in black shale-derived soils is of increasing concern due to its wide occurrence, high Cd concentrations, and potential risks. However, characteristics of enrichment and environmental availability of Cd in these soils are not well understood, which has restricted pollution control and land management. In this study, agricultural soils with elevated Cd concentrations resulting from weathering of Cd-bearing black shale in southwestern China were collected and analyzed. The results showed that Cd could be retained in soils through mechanical inheritance and/or associated with secondary minerals and organic materials. Cd concentrations in soils of the study area ranged between 0.83 and 21.6 mg/kg (average of 5.20 mg/kg), exceeding the risk screening value for agricultural land in China. The heterogeneity of Cd in these soils was highly related to geochemical composition of parent rock and other natural factors. The 0.01 M CaCl2 and 0.05 M EDTA extraction showed that Cd in these soils had high environmental availability and potential risks. Mobile Cd pool (CaCl2 extractable Cd, average: 0.24 mg/kg) accounted for 0.07-38.9% of the total Cd, depending on soil pH. Mobilizable Cd pool (EDTA extractable Cd, average: 2.18 mg/kg) accounted for 22.0-100%. These results showed the significance of geochemical background on enrichment of Cd in soils, documented high environmental availability of Cd in black shale-derived soils, and influence of soil pH.


Assuntos
Poluentes do Solo , Solo , Cádmio/análise , Cloreto de Cálcio , China , Ácido Edético , Monitoramento Ambiental , Minerais , Solo/química , Poluentes do Solo/análise
16.
J Hazard Mater ; 422: 126876, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34416699

RESUMO

Selenium (Se), which can be both hazardous and beneficial to plants, animals and humans, plays a pivotal role in regulating soil-plant-human ecosystem functions. The biogeochemical behavior of Se and its environmental impact on the soil-plant-human system has received broad attention in the last decades. This review provides a comprehensive understanding of Se biogeochemistry in the soil-plant-human system. The speciation, transformation, bioavailability as well as the beneficial and hazardous effects of Se in the soil-plant-human system are summarized. Several important aspects in Se in the soil-plant-human system are detailed mentioned, including (1) strategies for biofortification in Se-deficient areas and phytoremediation of soil Se in seleniferous areas; (2) factors affecting Se uptake and transport by plants; (3) metabolic pathways of Se in the human body; (4) the interactions between Se and other trace elements in plant and animals, in particular, the detoxification of heavy metals by Se. Important research hotspots of Se biogeochemistry are outlined, including (1) the coupling of soil microbial activity and the Se biogeochemical cycle; (2) the molecular mechanism of Se metabolic in plants and animals; and (3) the application of Se isotopes as a biogeochemical tracer in research. This review provides up-to-date knowledge and guidelines on Se biogeochemistry research.


Assuntos
Selênio , Poluentes do Solo , Animais , Biodegradação Ambiental , Ecossistema , Humanos , Plantas , Selênio/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
17.
Sci Total Environ ; 818: 151826, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34822895

RESUMO

Mining activities lead to elevated levels of antimony (Sb) and arsenic (As) in river systems, having adverse effects on the aquatic environment and human health. Microbes inhabiting river sediment can mediate the transformation of Sb and As, thus changing the toxicity and mobility of Sb and As. Compared to river sediments, natural wetlands could introduce distinct geochemical conditions, leading to the formation of different sedimentary microbial compositions between river sediments and wetland sediments. However, whether such changes in microbial composition could influence the microbially mediated geochemical behavior of Sb or As remains poorly understood. In this study, we collected samples from a river contaminated by Sb tailings and a downstream natural wetland to study the influence of microorganisms on the geochemical behavior of Sb and As after the Sb/As-contaminated river entered the natural wetland. We found that the microbial compositions in the natural wetland soil differed from those in the river sediment. The Sb/As contaminant components (Sb(III), As(III), As(V), Asexe) and nutrients (TC) were important determinants of the difference in the compositions of the microbial communities in the two environments. Taxonomic groups were differentially enriched between the river sediment and wetland soil. For example, the taxonomic groups Xanthomonadales, Clostridiales and Desulfuromonadales were important in the wetland and were likely to involve in Sb/As reduction, sulfate reduction and Fe(III) reduction, whereas Burkholderiales, Desulfobacterales, Hydrogenophilales and Rhodocyclales were important taxonomic groups in the river sediments and were reported to involve in Sb/As oxidation and sulfide oxidation. Our results suggest that microorganisms in both river sediments and natural wetlands can affect the geochemical behavior of Sb/As, but the mechanisms of action are different.


Assuntos
Arsênio , Microbiota , Antimônio/análise , Arsênio/análise , Monitoramento Ambiental , Compostos Férricos , Humanos , Áreas Alagadas
18.
Sci Total Environ ; 805: 150237, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34818805

RESUMO

Water pollution caused by the release of manganese (Mn2+) and ammonia nitrogen (NH4+-N) from electrolytic manganese residue (EMR) generated from industrial activities poses a serious threat to ecosystems and human health. In this study, an integrated process consisting sequentially of hydroxide sedimentation, struvite precipitation, breakpoint chlorination, and ferric chloride coagulation was optimized to remove Mn2+ and NH4+-N from EMR leachate, and to address the issue of residual orthophosphate caused by struvite precipitation. The precipitates were characterized using X-ray diffraction, scanning electron microscopy, and thermogravimetric analyses. Results show that Mn2+ ions and the resulting chemical oxygen demand (COD) were mainly removed using hydroxide precipitation at a sedimentation pH of 10.2, with poor-crystalline manganese hydroxide as the main precipitate. NH4+-N was primarily removed and recovered using struvite precipitation with well crystalline struvite as the main product, and then further eliminated using breakpoint chlorination. The residual orthophosphate introduced by struvite precipitation is successfully removed with ferric coagulation, and the effluent pH (7.5) is also lowered to discharge limits by means of hydrolysis of ferric coagulant. The concentration of COD, Mn2+, NH4+-N, and orthophosphate concentrations in the final effluent were 30.52 ± 9.38, 0.026 ± 0.013, 0.87 ± 0.01, and 0.06 ± 0.002 mg/L, respectively, meeting all local discharge standards. This combined process has robust pollutant removal efficiency, high resource recovery potential and few environmental constraints; thus, it is recommended as a potential solution for the treatment of Mn2+- and NH4+-N-rich acid mine drainage.


Assuntos
Compostos de Amônio , Fosfatos , Ecossistema , Halogenação , Humanos , Hidróxidos , Manganês , Estruvita
19.
Artigo em Inglês | MEDLINE | ID: mdl-36612325

RESUMO

Thallium (Tl) is a nonessential and toxic trace metal that is detrimental to plants, but it can be highly up-taken in green cabbage (Brassica oleracea L. var. capitata L.). It has been proven that there is a significant positive correlation between Tl and Calcium (Ca) contents in plants. However, whether Ca presents a similar role for alleviating Tl toxicity in plants remains unclear, and little is known in terms of evidence for both Ca-enhanced uptake of Tl from soils to green cabbage and associated geochemical processes. In this study, we investigated the influence of Ca in soils on Tl uptake in green cabbage and the associated geochemical process. The pot experiments were conducted in 12 mg/kg Tl(I) and 8 mg/kg Tl(III) treatments with various Ca dosages. The results showed that Ca in soils could significantly enhance Tl uptake in green cabbage, increasing 210% in content over the control group. The soluble concentrations of Tl were largely increased by 210% and 150%, respectively, in 3.0 g/kg Ca treatment, compared with the corresponding treatment without Ca addition. This was attributed to the geochemical process in which the enhanced soluble Ca probably replaces Tl held on the soil particles, releasing more soluble Tl into the soil solution. More interestingly, the bioconcentration factor of the leaves and whole plant for the 2.0, 2.5, 3.0 g/kg Ca dosage group were greatly higher than for the non-Ca treatment, which could reach 207%, implying the addition of Ca can improve the ability of green cabbage to transfer Tl from the stems to the leaves. Furthermore, the pH values dropped with the increasing Ca concentration treatment, and the lower pH in soils also increased Tl mobilization, which resulted in Tl accumulation in green cabbage. Therefore, this work not only informs the improvement of agricultural safety management practices for the farming of crops in Tl-polluted and high-Ca-content areas, but also provides technical support for the exploitation of Ca-assisted phytoextraction technology.


Assuntos
Brassica , Poluentes do Solo , Tálio/análise , Cálcio/metabolismo , Poluentes do Solo/análise , Brassica/química , Cálcio da Dieta , Solo/química , Intoxicação por Metais Pesados , Plantas/metabolismo
20.
Water Res ; 203: 117561, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34450463

RESUMO

Nanosized activated carbon (NAC) is a novel adsorbent with great potential for water reclamation. However, its transport and reactivity in aqueous environments may be greatly affected by its stability against aggregation. This study investigated the colloidal stability of NAC in model aqueous systems with broad background solution chemistries including 7 electrolytes (NaCl, NaNO3, Na2SO4, KCl, CaCl2, MgCl2, and BaCl2), pH 4-9, and 6 macromolecules (humic acid (HA), fulvic acid (FA), cellulose (CEL), bovine serum albumin (BSA), alginate (ALG), and extracellular polymeric substance (EPS)), along with natural water samples collected from pristine to polluted rivers. The results showed that higher solution pH stabilized NAC by raising the critical coagulation concentration from 28 to 590 mM NaCl. Increased cation concentration destabilized NAC by charge screening, with the cationic influence following Ba2+ > Ca2+ > Mg2+ >> Na+ > K+. Its aggregation behavior could be predicted with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory with a Hamaker constant (ACWC) of 4.3 × 10-20 J. The presence of macromolecules stabilized NAC in NaCl solution and most CaCl2 solution following EPS > BSA > CEL > HA > FA > ALG, due largely to enhanced electrical repulsion and steric hindrance originated from adsorbed macromolecules. However, ALG and HA strongly destabilized NAC via cation bridging at high Ca2+ concentrations. Approximately half of NAC particles remained stably suspended for ∼10 d in neutral freshwater samples. The results demonstrated the complex effects of water chemistry on fate and transport of NAC in aquatic environments.


Assuntos
Carvão Vegetal , Nanopartículas , Eletrólitos , Matriz Extracelular de Substâncias Poliméricas , Concentração de Íons de Hidrogênio , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...