Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 9(11)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37999008

RESUMO

The significant concerns associated with the widespread use of petroleum-based plastic materials have prompted substantial research on and development of active food packaging materials. Even though fish gelatin-based films are appealing as active food packaging materials, they present practical production challenges. Therefore, this study aimed to develop an edible film using Ficus carica L. leaf extract (FLE), as it is affordable, accessible, and has superoxide anion radical scavenging action. This edible film was produced by adding FLE to mackerel skin gelatin at varied concentrations (2.5-10% w/w). The results showed that adding FLE to gelatin films significantly affected the tensile strength (TS), elongation at break (EAB), transmittance and transparency, solubility, water vapor permeability (WVP), antioxidant activity, and antibacterial activity. Among all the samples, the most promising result was obtained for the edible film with FLE 10%, resulting in TS, EAB, solubility, WVP, antioxidant activity, and antibacterial activity against S. aureus and E. coli results of 2.74 MPa, 372.82%, 36.20%, 3.96 × 10-11 g/msPa, 45.49%, 27.27 mm, and 25.10 mm, respectively. The study's overall findings showed that fish gelatin-based films incorporated with FLE are promising eco-friendly, biodegradable, and sustainable active packaging materials.

2.
Molecules ; 28(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37446636

RESUMO

Okara is a solid byproduct created during the processing of soy milk. The production of protein hydrolysates utilizing enzymatic tests such as papain can result in the production of bioactive peptides (BPs), which are amino acid sequences that can also be produced from the okara protein by hydrolysis. The objective of this study was to investigate the antioxidant activities of okara hydrolysates using papain, based on the in silico and in vitro assays using the papain enzyme. We found that using the in silico assessment, the antioxidant peptides can be found from the precursor (glycinin and conglycinin) in okara. When used as a protease, papain provides the maximum degree of hydrolysis for antioxidative peptides. The highest-peptide-rank peptide sequence was predicted using peptide ranks such as proline-histidine-phenylalanine (PHF), alanine-aspartic acid-phenylalanine (ADF), tyrosine-tyrosine-leucine (YYL), proline-histidine-histidine (PHH), isoleucine-arginine (IR), and serine-valine-leucine (SVL). Molecular docking studies revealed that all peptides generated from the parent protein impeded substrate access to the active site of xanthine oxidase (XO). They have antioxidative properties and are employed in the in silico approach to the XO enzyme. We also use papain to evaluate the antioxidant activity by using in vitro tests for protein hydrolysate following proteolysis. The antioxidant properties of okara protein hydrolysates have been shown in vitro, utilizing DPPH and FRAP experiments. This study suggests that okara hydrolysates generated by papain can be employed as natural antioxidants in food and for further applications, such as active ingredients for antioxidants in packaging.


Assuntos
Antioxidantes , Hidrolisados de Proteína , Antioxidantes/farmacologia , Antioxidantes/química , Hidrolisados de Proteína/química , Papaína/química , Simulação de Acoplamento Molecular , Histidina , Leucina , Hidrólise , Peptídeos/farmacologia , Peptídeos/química
3.
Waste Biomass Valorization ; : 1-15, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37363337

RESUMO

One of potential inhibitors which is widely used for the clinical treatment of COVID-19 in comorbid patients is Angiostensin Converting Enzyme-1 (ACE1) inhibitor. A safer peptide-based ACE1 inhibitor derived from salmon skin collagen, that is considered as the by-product of the fish processing industry have been investigated in this study. The inhibitory activity against ACE1 was examined using in vitro and in silico methods. In vitro analysis includes the extraction of acid-soluble collagen, characterization using FTIR, Raman, UV-Vis, XRD, cytotoxicity assay, and determination of inhibition against ACE1. In silico method visualizes binding affinity, molecular interaction, and inhibition type of intact collagen and active peptides derived from collagen against ACE1 using molecular docking. The results of FTIR spectra detected amide functional groups (A, B, I, II, III) and imine proline/hydroxyproline, while the results of Raman displayed peak absorption of amide I, amide III, proline/hydroxyproline ring, phenylalanine, and protein backbone. Furthermore, UV-Vis spectra showed typical collagen absorption at 230 nm and based on XRD data, the chain types in the samples were α-helix. ACE1 inhibition activity was obtained in a concentration-dependent manner where the highest was 82.83% and 85.84% at concentrations of 1000, and 2000 µg/mL, respectively, and showed very low cytotoxicity at the concentration less than 1000 µg/mL. In silico study showed an interaction between ACE1 and collagen outside the active site with the affinity of - 213.89 kcal/mol. Furthermore, the active peptides of collagen displayed greater affinity compared to lisinopril, namely HF (His-Phe), WYT (Trp-Tyr-Thr), and WF (Trp-Phe) of - 11.52; - 10.22; - 9.58 kcal/mol, respectively. The salmon skin-derived collagen demonstrated ACE1 inhibition activity with a non-competitive inhibition mechanism. In contrast, the active peptides were predicted as potent competitive inhibitors against ACE1. This study indicated that valorization of fish by-product can lead to the production of a promising bioactive compound to treat COVID-19 patient with diabetic comorbid.

4.
Polymers (Basel) ; 15(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37177220

RESUMO

One of the greatest challenges encountered by the food industry is the loss of quality of food products during storage, especially perishable foods such as chicken breast, which eventually adds to the waste. Edible films are known as a potential alternative to maintain food quality and also improve shelf life by delaying the microbial spoilage and providing moisture and gas barrier properties. Developments in edible films from biopolymer composites such as fish gelatin, pectin and essential oils have great potential and promising results in enhancing the shelf life of food products. This study was conducted to determine the effect of adding pectin and lemongrass essential oil on the properties of gelatin film and its application to preserve the quality of chicken breast. In this study, the fish skin gelatin and pectin were used with various compositions (100:0; 75:25; 50:50%), with and without the addition of lemongrass essential oil to develop edible films by a casting method. The results showed that the fish gelatin-pectin with the addition of essential oils caused a significant influence on several physicochemical properties such as the thickness, transmittance, transparency, water content, tensile strength, elongation at break and also antioxidant activity (p < 0.05). The antibacterial activity evaluation showed that edible film from a biocomposite of gelatin-pectin (75:25 and 50:50) with the addition of essential oil had an inhibitory effect on Salmonella. The biocomposite of the edible film made from gelatin-pectin and the addition of lemongrass essential oil have the potential to be developed as a food packaging material, especially for perishable food. Based on the result of the application of edible film to chicken breast, it also could maintain the quality of chicken breast during storage.

5.
Int J Biol Macromol ; 231: 123248, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36642356

RESUMO

Gelatin hydrogel is widely employed in various fields, however, commercially available gelatin hydrogels are mostly derived from mammalian which has many disadvantages due to the supply and ethical issues. In this study, the properties of hydrogels from fish-derived collagen fabricated with varying Glutaraldehyde (GA) determined. The antidiabetic properties of salmon gelatin (SG) and tilapia gelatin (TG) was also evaluated against α-glucosidase. Glutaraldehyde-crosslinked salmon gelatin and tilapia gelatin were used, and compared with different concentrations of GA by 0.05 %, 0.1 %, and 0.15 %. Water absorbency, swelling, porosity, pore size and water retention of the hydrogels were dependent on the degree of crosslinking. The synthesis of hydrogels was confirmed by FTIR study. Scanning electron microscope (SEM) observation showed that all hydrogels have a porous structure with irregular shapes and heterogeneous morphology. Performance tests showed that gelatin-GA 0.05 % mixture had the best performance. Antidiabetic bioactivity in vitro and in silico tests showed that the active peptides of SG and TG showed a high binding affinity to α-glucosidase enzyme. In conclusion, SG and TG cross-linked GA 0.05 % have the potential as an antidiabetic agent and as a useful option over mammalian-derived gelatin.


Assuntos
Gelatina , Hidrogéis , Animais , Hidrogéis/química , Gelatina/química , Glutaral , alfa-Glucosidases , Peptídeos , Água/química , Mamíferos
6.
Gels ; 9(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36661815

RESUMO

Red chili is a climacteric fruit that still undergoes respiration after harvest. During storage, it is susceptible to mechanical, physical, and physiological damage and decay incidence, therefore a method is needed to protect it so that the quality losses can be minimized. One way this can be achieved is by applying edible coatings that can be made from hydrocolloids, lipids, or composites of both, in addition to antimicrobial agents that can also be added to inhibit microbial growth. In this study, we detail the application of an edible coating made of gelatin composite from tilapia fish skin, which has a transparent color and good barrier properties against O2, CO2, and lipids. To increase its physicochemical and functional qualities, it must be modified by adding composite elements such as pectin as well as hydrophobic ingredients such as garlic essential oil. This study was conducted to determine the effect of a gelatin-pectin composite edible coating (75:25, 50:50, 25:75), which was incorporated with garlic essential oil (2% and 3%) on the physicochemical properties of red chili at room temperature (±29 °C), RH ± 69%) for 14 days. The best treatment was the 50-50% pectin-gelatin composite, which was incorporated with garlic essential oil with a concentration of 2 and 3%. This treatment provided a protective effect against changes in several physicochemical properties: inhibiting weight loss of 36.36 and 37.03%, softening of texture by 0.547 and 0.539 kg/84 mm2, maintaining acidity of 0.0087 and 0.0081%, maintaining vitamin C content of 2.237 and 2.349 mg/gr, anti-oxidant activity (IC50) 546.587 and 524.907; it also provided a protective effect on chili colors changing to red, and retains better total dissolved solid values.

7.
Molecules ; 27(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36296446

RESUMO

This study explores utilization of a sustainable soybean by-product (okara) based on in silico approach. In silico approaches, as well as the BIOPEP database, PeptideRanker database, Peptide Calculator database (Pepcalc), ToxinPred database, and AllerTop database, were employed to evaluate the potential of glycinin and conglycinin derived peptides as a potential source of bioactive peptides. These major protein precursors have been found as protein in okara as a soybean by-product. Furthermore, primary structure, biological potential, and physicochemical, sensory, and allergenic characteristics of the theoretically released antioxidant peptides were predicted in this research. Glycinin and α subunits of ß-conglycinin were selected as potential precursors of bioactive peptides based on in silico analysis. The most notable among these are antioxidant peptides. First, the potential of protein precursors for releasing bioactive peptides was evaluated by determining the frequency of occurrence of fragments with a given activity. Through the BIOPEP database analysis, there are several antioxidant bioactive peptides in glycinin and ß and α subunits of ß-conglycinin sequences. Then, an in silico proteolysis using selected enzymes (papain, bromelain) to obtain antioxidant peptides was investigated and then analyzed using PeptideRanker and Pepcalc. Allergenic analysis using the AllerTop revealed that all in silico proteolysis-derived antioxidant peptides are probably nonallergenic peptides. We also performed molecular docking against MPO (myeloperoxidases) for this peptide. Overall, the present study highlights that glycinin and ß and α subunits of ß-conglycinin could be promising precursors of bioactive peptides that have an antioxidant peptide for developing several applications.


Assuntos
Globulinas , Glycine max , Glycine max/química , Papaína , Bromelaínas , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Globulinas/metabolismo , Proteínas de Soja/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Antígenos de Plantas/metabolismo , Peptídeos , Precursores de Proteínas
8.
Polymers (Basel) ; 14(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35808671

RESUMO

The purpose of this research was to determine the effect of composite fish gelatin-chitosan edible coatings enriched with black tea extract on the physical, chemical, and fungal decay properties of minimally processed watermelons stored at ±4 °C for 13 days. In this study, tuna skin gelatin was extracted and used to prepare edible coating solutions which comprised 4% gelatin, 2% chitosan, 2% calcium lactate, 2% glycerol, and black tea extract (0%; 0.25%; 0.50%; 0.75%; 1%). The samples were coated using the layer-by-layer dipping technique. This study showed that composite fish gelatin-chitosan edible coating enriched with black tea extract maintained and improved weight loss, texture (hardness), color, pH, and total soluble solid antioxidant activity and prevented fungal decay on minimally processed watermelons stored at ±4 °C for 13 days. The development in this study of edible film and a coating prepared from fish gelatin-chitosan and the incorporation of black tea extract as an antioxidant or antimicrobial agent can be a new approach to preventing postharvest loss and increasing the shelf life of minimally processed watermelon.

9.
Environ Res ; 212(Pt A): 113002, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35305983

RESUMO

Fish skin collagen hydrolyzate has demonstrated the potent inhibition of dipeptidyl peptidase-IV (DPP-IV), one of the treatments for type-2 diabetes mellitus (type-2 DM), but the precise mechanism is still unclear. This study used in silico method to evaluate the potential of the active peptides from tilapia skin collagen (Oreochromis niloticus) for DPP-IV inhibitor. The methodology includes collagen hydrolysis using BIOPEP, which is the database of bioactive peptides; active peptide selection; toxicity, allergenicity, sensory analysis of active peptides; and binding of active peptides to DPP-IV compared with linagliptin. The result indicated that in silico enzymatic hydrolysis of collagen produced active peptides with better prediction of biological activity than intact collagen. There are 13 active peptides were predicted as non-toxic and non-allergenic, some of which have a bitter, salty, and undetectable taste. Docking simulations showed all active peptides interacted with DPP-IV through hydrogen bonds, van der Waals force, hydrophobic interaction, electrostatic force, π-sulfur, and unfavorable interaction, where WF (Trp-Phe), VW (Val-Trp), WY (Trp-Tyr), and WG (Trp-Gly) displayed higher binding affinities of 0.8; 0.5; 0.4; and 0.3 kcal/mol compared with linagliptin. In this study, we successfully demonstrated antidiabetic type-2 DM potential of the active peptides from tilapia skin collagen. The obtained data provided preliminary data for further research in the utilization of fish skin waste as a functional compound to treat the type-2 DM patients. Alternatively, this treatment can be synergistically combined with the available antidiabetic drugs to improve the insulin secretion of the type-2 DM patients.


Assuntos
Diabetes Mellitus Tipo 2 , Peptídeos , Tilápia , Animais , Colágeno , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Linagliptina , Simulação de Acoplamento Molecular , Peptídeos/química , Peptídeos/farmacologia , Proteólise , Pele/química
10.
Chemosphere ; 295: 133740, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35124085

RESUMO

Cyanobacteria such as Spirulina platensis secretes numerous biomolecules while consuming CO2 for photosynthesis which can reduce the environmental pollution as it can also be grown in wastewater. These biomolecules can be further processed in numerous pathways such as feed, fuel, pharmaceuticals, and nutraceuticals. This study aims to screen the potential molecular mechanisms of pigments from cyanobacteria as antidiabetic type-2 candidates through molecular docking. The activities of the test compounds were compared to commercial diabetic drugs, such as acarbose, linagliptin and polydatin. The results indicated that the binding affinity of pheophytin, ß-carotene, and phycocyanobilin to α-amylase were 0.4, 2, and 2.6 kcal/mol higher than that of acarbose with α-amylase. Binding affinity between pheophytin, ß-carotene, and phycocyanobilin with α-glucosidase were found to be comparable, which resulted 1.2, and 1.6 kcal/mol higher than that of acarbose with α-glucosidase. Meanwhile, binding activity of ß-carotene and phycocyanobilin with DPP-IV were 0.5 and 0.3 kcal/mol higher than that of linagliptin with DPP-IV, whereas pheophytin, ß-carotene, and phycocyanobilin with Glucose-6-phosphate dehydrogenase (G6PD) were 0.2, 1, and 1.4 kcal/mol higher from that of polydatin with G6PD. Moreover, pheophytin, ß-carotene and phycocyanobilin were likely to inhibit α-amylase, α-glucosidase, and DPP-IV competitively, while uncompetitively for G6PD. Thus, the integration of molecular docking and experimental approach, such as in vitro and in vivo studies may greatly improve the discovery of true bioactive compounds in cyanobacteria for type 2 diabetes mellitus drugs and treatments.


Assuntos
Diabetes Mellitus Tipo 2 , Microalgas , Humanos , Hipoglicemiantes , Microalgas/metabolismo , Simulação de Acoplamento Molecular , alfa-Amilases/química , alfa-Amilases/metabolismo , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo
11.
Bioengineered ; 12(2): 11305-11330, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34779353

RESUMO

The growing population and the climate changes put a pressure on food production globally, therefore a fundamental transformation of food production is required. One approach to accelerate food production is application of modern biotechnology such as cell culture, marker assisted selection, and genetic engineering. Cell culture technology reduces the usage of arable land, while marker-assisted selection increases the genetic gain of crop breeding and genetic engineering enable to introduce a desired traits to crop. The cell culture technology has resulted in development of cultured meat, fungal biomass food (mycoprotein), and bioactive compounds from plant cell culture. Except cultured meat which recently begin to penetrate the market, the other products have been in the market for years. The marker-assisted selection and genetic engineering have contributed significantly to increase the resiliency against emerging pests and abiotic stresses. This review addresses diverse techniques of cell culture technology as well as advanced genetic engineering technology CRISPR Cas-9 and its application for crop improvement. The pros and cons of different techniques as well as the challenges and future perspective of application of modern biotechnology for strengthening food security are also discussed.


Assuntos
Técnicas de Cultura de Células/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Segurança Alimentar , Engenharia Genética , Animais , Biotecnologia , Plantas Geneticamente Modificadas
12.
Chem Biodivers ; 11(11): 1871-81, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25408328

RESUMO

Carotenoid degradation products, known as norisoprenoids, are aroma-impact compounds in several plants. Pandan wangi is a common name of the shrub Pandanus amaryllifolius. The genus name 'Pandanus' is derived from the Indonesian name of the tree, pandan. In Indonesia, the leaves from the plant are used for several purposes, e.g., as natural colorants and flavor, and as traditional treatments. The aim of this study was to determine the cleavage of ß-carotene and ß-apo-8'-carotenal by carotenoid-cleavage enzymes isolated from pandan leaves, to investigate dependencies of the enzymatic activities on temperature and pH, to determine the enzymatic reaction products by using Headspace Solid Phase Microextraction Gas Chromatography/Mass Spectrophotometry (HS-SPME GC/MS), and to investigate the influence of heat treatment and addition of crude enzyme on formation of norisoprenoids. Crude enzymes from pandan leaves showed higher activity against ß-carotene than ß-apo-8'-carotenal. The optimum temperature of crude enzymes was 70°, while the optimum pH value was 6. We identified ß-ionone as the major volatile reaction product from the incubations of two different carotenoid substrates, ß-carotene and ß-apo-8'-carotenal. Several treatments, e.g., heat treatment and addition of crude enzymes in pandan leaves contributed to the norisoprenoid content. Our findings revealed that the crude enzymes from pandan leaves with carotenoid-cleavage activity might provide a potential application, especially for biocatalysis, in natural-flavor industry.


Assuntos
Carotenoides/metabolismo , Enzimas/metabolismo , Pandanaceae/enzimologia , Extratos Vegetais/química , Folhas de Planta/enzimologia , Carotenoides/química , Enzimas/química , Enzimas/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Concentração de Íons de Hidrogênio , Estrutura Molecular , Extratos Vegetais/isolamento & purificação , Microextração em Fase Sólida , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...