Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722625

RESUMO

This study investigates the electrochemical behavior of GelMA-based hydrogels and their interactions with PC12 neural cells under electrical stimulation in the presence of conducting substrates. Focusing on indium tin oxide (ITO), platinum, and gold mylar substrates supporting conductive scaffolds composed of hydrogel, graphene oxide, and gold nanorods, we explored how the substrate materials affect scaffold conductivity and cell viability. We examined the impact of an optimized electrical stimulation protocol on the PC12 cell viability. According to our findings, substrate selection significantly influences conductive hydrogel behavior, affecting cell viability and proliferation as a result. In particular, the ITO substrates were found to provide the best support for cell viability with an average of at least three times higher metabolic activity compared to platinum and gold mylar substrates over a 7 day stimulation period. The study offers new insights into substrate selection as a platform for neural cell stimulation and underscores the critical role of substrate materials in optimizing the efficacy of neural interfaces for biomedical applications. In addition to extending existing work, this study provides a robust platform for future explorations aimed at tailoring the full potential of tissue-engineered neural interfaces.

2.
ACS Nano ; 18(4): 3597-3613, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38221746

RESUMO

The central nervous system's limited capacity for regeneration often leads to permanent neuronal loss following injury. Reprogramming resident reactive astrocytes into induced neurons at the site of injury is a promising strategy for neural repair, but challenges persist in stabilizing and accurately targeting viral vectors for transgene expression. In this study, we employed a bioinspired self-assembling peptide (SAP) hydrogel for the precise and controlled release of a hybrid adeno-associated virus (AAV) vector, AAVDJ, carrying the NeuroD1 neural reprogramming transgene. This method effectively mitigates the issues of high viral dosage at the target site, off-target delivery, and immunogenic reactions, enhancing the vector's targeting and reprogramming efficiency. In vitro, this vector successfully induced neuron formation, as confirmed by morphological, histochemical, and electrophysiological analyses. In vivo, SAP-mediated delivery of AAVDJ-NeuroD1 facilitated the trans-differentiation of reactive host astrocytes into induced neurons, concurrently reducing glial scarring. Our findings introduce a safe and effective method for treating central nervous system injuries, marking a significant advancement in regenerative neuroscience.


Assuntos
Hidrogéis , Neurônios , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Neurônios/metabolismo , Sistema Nervoso Central , Peptídeos/farmacologia , Transgenes
3.
Adv Sci (Weinh) ; 11(5): e2303707, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38030559

RESUMO

Current therapies for the devastating damage caused by traumatic brain injuries (TBI) are limited. This is in part due to poor drug efficacy to modulate neuroinflammation, angiogenesis and/or promoting neuroprotection and is the combined result of challenges in getting drugs across the blood brain barrier, in a targeted approach. The negative impact of the injured extracellular matrix (ECM) has been identified as a factor in restricting post-injury plasticity of residual neurons and is shown to reduce the functional integration of grafted cells. Therefore, new strategies are needed to manipulate the extracellular environment at the subacute phase to enhance brain regeneration. In this review, potential strategies are to be discussed for the treatment of TBI by using self-assembling peptide (SAP) hydrogels, fabricated via the rational design of supramolecular peptide scaffolds, as an artificial ECM which under the appropriate conditions yields a supramolecular hydrogel. Sequence selection of the peptides allows the tuning of these hydrogels' physical and biochemical properties such as charge, hydrophobicity, cell adhesiveness, stiffness, factor presentation, degradation profile and responsiveness to (external) stimuli. This review aims to facilitate the development of more intelligent biomaterials in the future to satisfy the parameters, requirements, and opportunities for the effective treatment of TBI.


Assuntos
Hidrogéis , Peptídeos , Hidrogéis/química , Peptídeos/química , Materiais Biocompatíveis/farmacologia , Matriz Extracelular/química , Adesão Celular
4.
ACS Appl Mater Interfaces ; 16(1): 332-341, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38111109

RESUMO

The rise of antibiotic resistance in pathogenic bacteria requires new therapeutics to be developed. Several metallic nanoparticles such as those made from silver, copper, and zinc have shown significant antibacterial activity, in part due to metal ion leaching. Ga3+ containing compounds have also been shown to have antibacterial properties. Accordingly, it is estimated that metallic Ga droplets may be antibacterial, and some studies to date have confirmed this. Here, multiple concentrations of Ga droplets were tested against the antibiotic resistant Gram-positive bacteria methicillin-resistantStaphylococcus aureus (MRSA) and the Gram-negative bacteria Pseudomonas aeruginosa (P. aeruginosa) Despite a high concentration (2 mg/mL), Ga droplets had only modest antibacterial activity against both bacteria after 24 h of interaction. Finally, we demonstrated that Ga droplets were easily functionalized through a galvanic replacement reaction to develop antibacterial particles with copper and silver demonstrating a total detectable reduction of MRSA and >96% reduction ofP. aeruginosa. Altogether, these results contradict previous literature and show that Ga droplets demonstrate no antibacterial activity at concentrations comparable to those of conventional antibiotics and well-established antibacterial nanomaterials and only modest antibacterial activity at very high concentrations. However, we demonstrate that their antibacterial activity can be easily enhanced by functionalization.


Assuntos
Gálio , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Prata/farmacologia , Gálio/farmacologia , Cobre/farmacologia , Antibacterianos/farmacologia , Meticilina , Bactérias , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa
5.
ACS Appl Mater Interfaces ; 15(48): 56464-56477, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37987616

RESUMO

Nanoscale heterojunction networks are increasingly regarded as promising functional materials for a variety of optoelectronic and photocatalytic devices. Despite their superior charge-carrier separation efficiency, a major challenge remains in the optimization of their surface properties, with surface defects playing a major role in charge trapping and recombination. Here, we report the effective engineering of the photocatalytic properties of nanoscale heterojunction networks via deep ultraviolet photoactivation throughout their cross-section. For the first time, in-depth XPS analysis of very thick (∼10 µm) NixOy-ZnO films reveals localized p-n nanoheterojunctions with tunable oxygen vacancies (Vo) originating from both NixOy and ZnO nanocrystals. Optimizing the amount of oxygen vacancies leads to a 30-fold increase in the photochemoresistive response of these networks, enabling the detection of representative analyte concentrations down to 2 and 20 ppb at an optimal temperature of 150 °C and room temperature, respectively. Density functional theory calculations reveal that this performance enhancement is presumably due to an 80% increase in the analyte adsorption energy. This flexible nanofabrication approach in conjunction with straightforward vacancy control via photoactivation provides an effective strategy for engineering the photocatalytic activity of porous metal oxide semiconductor networks with applications in chemical sensors, photodetectors, and photoelectrochemical cells.

6.
Int J Biol Macromol ; 251: 126232, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37562478

RESUMO

Self-assembled peptide and polysaccharide nanogels are excellent candidates for bioactive delivery vectors. However, there are still significant challenges in the application of nanogels as delivery tools for bioactive elements. This study aims to deliver, and control the release of a hydrophobic bioactive flavonoid hesperidin. Using the self-assembling peptide (SAP) Fmoc-FRGDF, extracellular matrix mimicking nanofibrils were fabricated, which were decorated and bolstered with immunomodulatory polysaccharide strands of fucoidan and infused with hesperidin. The mechanical properties, secondary structure, and microscopic morphologies of the composite hydrogels were characterized using rheometer, FTIR, XRD, and TEM, etc. The encapsulation efficiency (EE) and release behavior of hesperidin were determined. Coassembly of the SAP with fucoidan improved the mechanical properties (from 9.54 Pa of Fmoc-FRGDF hydrogel to 7735 Pa of coassembly hydrogel at 6 mg/mL fucoidan concentration), formed thicker nanofibril bundles at 4 and 6 mg/mL fucoidan concentration, improved the EE of hesperidin from 72.86 % of Fmoc-FRGDF hydrogel to over 90 % of coassembly hydrogels, and showed effectively controlled release of hesperidin in vitro. Intriguingly, the first order kinetic model predicted an enhanced hydrogel retention and release of hesperidin. This study revealed a new approach for bioengineered nanogels that could be used to stabilize and release hydrophobic payloads.

7.
Gels ; 9(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36975648

RESUMO

Bioinspired self-assembly is a bottom-up strategy enabling biologically sophisticated nanostructured biogels that can mimic natural tissue. Self-assembling peptides (SAPs), carefully designed, form signal-rich supramolecular nanostructures that intertwine to form a hydrogel material that can be used for a range of cell and tissue engineering scaffolds. Using the tools of nature, they are a versatile framework for the supply and presentation of important biological factors. Recent developments have shown promise for many applications such as therapeutic gene, drug and cell delivery and yet are stable enough for large-scale tissue engineering. This is due to their excellent programmability-features can be incorporated for innate biocompatibility, biodegradability, synthetic feasibility, biological functionality and responsiveness to external stimuli. SAPs can be used independently or combined with other (macro)molecules to recapitulate surprisingly complex biological functions in a simple framework. It is easy to accomplish localized delivery, since they can be injected and can deliver targeted and sustained effects. In this review, we discuss the categories of SAPs, applications for gene and drug delivery, and their inherent design challenges. We highlight selected applications from the literature and make suggestions to advance the field with SAPs as a simple, yet smart delivery platform for emerging BioMedTech applications.

8.
Int J Speech Lang Pathol ; 25(1): 9-14, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36476000

RESUMO

PURPOSE: This invited commentary addresses the importance of the senses in human communication, outlines advances achieved with cochlear implants, and new research directions to improve neural prostheses. RESULT: In severely deaf people, cochlear implants restore speech understanding and enable children to achieve spoken language. Research in neural prostheses is advancing the restoration of hearing, vision, tactile senses, movement and the management of epilepsy. Bio-inspired stimulation strategies incorporating temporal and spatial characteristics of neural responses may deliver improved speech, vision and tactile perception using prostheses. To achieve stable long-term stimulation, chronic inflammation at the brain-electrode interface may be reduced using ROCK/Rho signalling pathway inhibitors and materials with brain-mimicking properties. CONCLUSION: This commentary paper addresses two Sustainable Development Goals: industry, innovation and infrastructure (SDG 9) and good health and well-being (SDG 3).


Assuntos
Implante Coclear , Implantes Cocleares , Criança , Humanos , Desenvolvimento Sustentável , Fala
9.
JACS Au ; 2(11): 2481-2490, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36465535

RESUMO

Electrochemical biosensors allow the rapid, selective, and sensitive transduction of critical biological parameters into measurable signals. However, current electrochemical biosensors often fail to selectively and sensitively detect small molecules because of their small size and low molecular complexity. We have developed an electrochemical biosensing platform that harnesses the analyte-dependent conformational change of highly selective solute-binding proteins to amplify the redox signal generated by analyte binding. Using this platform, we constructed and characterized two biosensors that can sense leucine and glycine, respectively. We show that these biosensors can selectively and sensitively detect their targets over a wide range of concentrations-up to 7 orders of magnitude-and that the selectivity of these sensors can be readily altered by switching the bioreceptor's binding domain. Our work represents a new paradigm for the design of a family of modular electrochemical biosensors, where access to electrode surfaces can be controlled by protein conformational changes.

10.
Macromol Biosci ; 22(10): e2200222, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35906813

RESUMO

Many materials have been engineered and commercialized as hemostatic agents. However, there is still a gap in the availability of hemostats that offer biocompatibility and biodegradability in combination with effective hemostatic properties. Cellulose nanofibers are investigated as hemostatic materials with most studies focusing on oxidized cellulose-derived hemostats. The recent studies demonstrate that by optimizing the morphological properties of nonoxidized cellulose nanofibers (CNFs) enhanced hemostasis is achieved. Herein, the hemostatic and wound-healing properties of CNFs with optimized morphology using two forms, gel, and sponge is investigated. In vitro thromboelastometry studies demonstrate that CNFs reduce clotting time by 68% (±SE 2%) and 88% (±SE 5%) in gel and sponge forms, respectively. In an in vivo murine liver injury model, CNFs significantly reduce blood loss by 38% (±SE 10%). The pH-neutral CNFs do not damage red blood cells, nor do they impede the proliferation of fibroblast or endothelial cells. Subcutaneously-implanted CNFs show a foreign body reaction resolving with the degradation of CNFs on histological examination and there is no scarring in the skin after 8 weeks. Demonstrating superior hemostatic performance in a variety of forms, as well as biocompatibility and biodegradability, CNFs hold significant potential for use in surgical and first-aid environments.


Assuntos
Celulose Oxidada , Hemostáticos , Nanofibras , Animais , Celulose/farmacologia , Celulose Oxidada/farmacologia , Células Endoteliais , Hemostasia , Hemostáticos/farmacologia , Camundongos
11.
Gels ; 8(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35735676

RESUMO

Metastatic tumours are complex ecosystems; a community of multiple cell types, including cancerous cells, fibroblasts, and immune cells that exist within a supportive and specific microenvironment. The interplay of these cells, together with tissue specific chemical, structural and temporal signals within a three-dimensional (3D) habitat, direct tumour cell behavior, a subtlety that can be easily lost in 2D tissue culture. Here, we investigate a significantly improved tool, consisting of a novel matrix of functionally programmed peptide sequences, self-assembled into a scaffold to enable the growth and the migration of multicellular lung tumour spheroids, as proof-of-concept. This 3D functional model aims to mimic the biological, chemical, and contextual cues of an in vivo tumor more closely than a typically used, unstructured hydrogel, allowing spatial and temporal activity modelling. This approach shows promise as a cancer model, enhancing current understandings of how tumours progress and spread over time within their microenvironment.

12.
Adv Sci (Weinh) ; 9(23): e2201415, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35657076

RESUMO

The spread of viral and bacterial pathogens mediated by contact with surfaces is a leading cause of infection worldwide. COVID-19 and the continuous rise of deaths associated with antibiotic-resistant bacteria highlight the need to impede surface-mediated transmission. A sprayable coating with an intrinsic ability to resist the uptake of bacteria and viruses from surfaces and droplets, such as those generated by sneezing or coughing, is reported. The coating also provides an effective microbicidal functionality against bacteria, providing a dual barrier against pathogen uptake and transmission. This antimicrobial functionality is fully preserved following scratching and other induced damage to its surface or 9 days of submersion in a highly concentrated suspension of bacteria. The coatings also register an 11-fold decrease in viral contamination compared to the noncoated surfaces.


Assuntos
Anti-Infecciosos , COVID-19 , Vírus , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias , Humanos
13.
ACS Biomater Sci Eng ; 8(7): 2764-2797, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35696306

RESUMO

Three-dimensional (3D) printing and 3D bioprinting are promising technologies for a broad range of healthcare applications from frontier regenerative medicine and tissue engineering therapies to pharmaceutical advancements yet must overcome the challenges of biocompatibility and resolution. Through comparison of traditional biofabrication methods with 3D (bio)printing, this review highlights the promise of 3D printing for the production of on-demand, personalized, and complex products that enhance the accessibility, effectiveness, and safety of drug therapies and delivery systems. In addition, this review describes the capacity of 3D bioprinting to fabricate patient-specific tissues and living cell systems (e.g., vascular networks, organs, muscles, and skeletal systems) as well as its applications in the delivery of cells and genes, microfluidics, and organ-on-chip constructs. This review summarizes how tailoring selected parameters (i.e., accurately selecting the appropriate printing method, materials, and printing parameters based on the desired application and behavior) can better facilitate the development of optimized 3D-printed products and how dynamic 4D-printed strategies (printing materials designed to change with time or stimulus) may be deployed to overcome many of the inherent limitations of conventional 3D-printed technologies. Comprehensive insights into a critical perspective of the future of 4D bioprinting, crucial requirements for 4D printing including the programmability of a material, multimaterial printing methods, and precise designs for meticulous transformations or even clinical applications are also given.


Assuntos
Bioimpressão , Medicina Regenerativa , Bioimpressão/métodos , Setor de Assistência à Saúde , Humanos , Impressão Tridimensional , Medicina Regenerativa/métodos , Tração
14.
Int J Mol Sci ; 23(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35563037

RESUMO

Clinical studies have provided evidence for dopamine (DA) cell replacement therapy in Parkinson's Disease. However, grafts derived from foetal tissue or pluripotent stem cells (PSCs) remain heterogeneous, with a high proportion of non-dopaminergic cells, and display subthreshold reinnervation of target tissues, thereby highlighting the need to identify new strategies to improve graft outcomes. In recent work, Stromal Cell-Derived Factor-1 (SDF1), secreted from meninges, has been shown to exert many roles during ventral midbrain DA development and DA-directed differentiation of PSCs. Related, co-implantation of meningeal cells has been shown to improve neural graft outcomes, however, no direct evidence for the role of SDF1 in neural grafting has been shown. Due to the rapid degradation of SDF1 protein, here, we utilised a hydrogel to entrap the protein and sustain its delivery at the transplant site to assess the impact on DA progenitor differentiation, survival and plasticity. Hydrogels were fabricated from self-assembling peptides (SAP), presenting an epitope for laminin, the brain's main extracellular matrix protein, thereby providing cell adhesive support for the grafts and additional laminin-integrin signalling to influence cell fate. We show that SDF1 functionalised SAP hydrogels resulted in larger grafts, containing more DA neurons, increased A9 DA specification (the subpopulation of DA neurons responsible for motor function) and enhanced innervation. These findings demonstrate the capacity for functionalised, tissue-specific hydrogels to improve the composition of grafts targeted for neural repair.


Assuntos
Doença de Parkinson , Animais , Biomimética , Diferenciação Celular/fisiologia , Quimiocina CXCL12 , Dopamina/metabolismo , Neurônios Dopaminérgicos , Matriz Extracelular/metabolismo , Feto/metabolismo , Hidrogéis/química , Laminina , Doença de Parkinson/terapia , Roedores/metabolismo
15.
Gels ; 8(4)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35448125

RESUMO

The defined self-assembly of peptides (SAPs) into nanostructured bioactive hydrogels has great potential for repairing traumatic brain injuries, as they maintain a stable, homeostatic environment at an injury site, preventing further degeneration. They also present a bespoke platform to restore function via the naturalistic presentation of therapeutic proteins, such as stromal-cell-derived factor 1 (SDF-1), expressed by meningeal cells. A key challenge to the use of the SDF protein, however, is its rapid diffusion and degradation. Here, we engineered a homeostatic hydrogel produced by incorporating recombinant SDF-1 protein within a self-assembled peptide hydrogel to create a supportive milieu for transplanted cells. Our hydrogel can concomitantly deliver viable primary neural progenitor cells and sustained active SDF-1 to support the nascent graft, resulting in increased neuronal differentiation. Moreover, this homeostatic hydrogel can ensure a healthy and larger graft core without impeding neuronal fiber growth and innervation. These findings demonstrate the regenerative potential of these hydrogels to improve the integration of grafted cells to treat neural injuries and diseases.

16.
Adv Mater ; 34(33): e2108757, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35396884

RESUMO

The incorporation of nanotechnology in regenerative medicine is at the nexus of fundamental innovations and early-stage breakthroughs, enabling exciting biomedical advances. One of the most exciting recent developments is the use of nanoscale constructs to influence the fate of cells, which are the basic building blocks of healthy function. Appropriate cell types can be effectively manipulated by direct cell reprogramming; a robust technique to manipulate cellular function and fate, underpinning burgeoning advances in drug delivery systems, regenerative medicine, and disease remodeling. Individual transcription factors, or combinations thereof, can be introduced into cells using both viral and nonviral delivery systems. Existing approaches have inherent limitations. Viral-based tools include issues of viral integration into the genome of the cells, the propensity for uncontrollable silencing, reduced copy potential and cell specificity, and neutralization via the immune response. Current nonviral cell reprogramming tools generally suffer from inferior expression efficiency. Nanomaterials are increasingly being explored to address these challenges and improve the efficacy of both viral and nonviral delivery because of their unique properties such as small size and high surface area. This review presents the state-of-the-art research in cell reprogramming, focused on recent breakthroughs in the deployment of nanomaterials as cell reprogramming delivery tools.


Assuntos
Reprogramação Celular , Nanoestruturas , Sistemas de Liberação de Medicamentos , Nanotecnologia , Medicina Regenerativa/métodos
17.
Polymers (Basel) ; 13(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34451130

RESUMO

Biofabrication using well-matched cell/materials systems provides unprecedented opportunities for dealing with human health issues where disease or injury overtake the body's native regenerative abilities. Such opportunities can be enhanced through the development of biomaterials with cues that appropriately influence embedded cells into forming functional tissues and organs. In this context, biomaterials' reliance on rigid biofabrication techniques needs to support the incorporation of a hierarchical mimicry of local and bulk biological cues that mimic the key functional components of native extracellular matrix. Advances in synthetic self-assembling peptide biomaterials promise to produce reproducible mimics of tissue-specific structures and may go some way in overcoming batch inconsistency issues of naturally sourced materials. Recent work in this area has demonstrated biofabrication with self-assembling peptide biomaterials with unique biofabrication technologies to support structural fidelity upon 3D patterning. The use of synthetic self-assembling peptide biomaterials is a growing field that has demonstrated applicability in dermal, intestinal, muscle, cancer and stem cell tissue engineering.

18.
APL Bioeng ; 5(3): 031502, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34258499

RESUMO

The debilitating effects of muscle damage, either through ischemic injury or volumetric muscle loss (VML), can have significant impacts on patients, and yet there are few effective treatments. This challenge arises when function is degraded due to significant amounts of skeletal muscle loss, beyond the regenerative ability of endogenous repair mechanisms. Currently available surgical interventions for VML are quite invasive and cannot typically restore function adequately. In response to this, many new bioengineering studies implicate 3D bioprinting as a viable option. Bioprinting for VML repair includes three distinct phases: printing and seeding, growth and maturation, and implantation and application. Although this 3D bioprinting technology has existed for several decades, the advent of more advanced and novel printing techniques has brought us closer to clinical applications. Recent studies have overcome previous limitations in diffusion distance with novel microchannel construct architectures and improved myotubule alignment with highly biomimetic nanostructures. These structures may also enhance angiogenic and nervous ingrowth post-implantation, though further research to improve these parameters has been limited. Inclusion of neural cells has also shown to improve myoblast maturation and development of neuromuscular junctions, bringing us one step closer to functional, implantable skeletal muscle constructs. Given the current state of skeletal muscle 3D bioprinting, the most pressing future avenues of research include furthering our understanding of the physical and biochemical mechanisms of myotube development and expanding our control over macroscopic and microscopic construct structures. Further to this, current investigation needs to be expanded from immunocompromised rodent and murine myoblast models to more clinically applicable human cell lines as we move closer to viable therapeutic implementation.

19.
ACS Biomater Sci Eng ; 7(7): 3340-3350, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34125518

RESUMO

Synthetic materials designed for improved biomimicry of the extracellular matrix must contain fibrous, bioactive, and mechanical cues. Self-assembly of low molecular weight gelator (LMWG) peptides Fmoc-DIKVAV (Fmoc-aspartic acid-isoleucine-lysine-valine-alanine-valine) and Fmoc-FRGDF (Fmoc-phenylalanine-arginine-glycine-aspartic acid-phenylalanine) creates fibrous and bioactive hydrogels. Polysaccharides such as agarose are biocompatible, degradable, and non-toxic. Agarose and these Fmoc-peptides have both demonstrated efficacy in vitro and in vivo. These materials have complementary properties; agarose has known mechanics in the physiological range but is inert and would benefit from bioactive and topographical cues found in the fibrous, protein-rich extracellular matrix. Fmoc-DIKVAV and Fmoc-FRGDF are synthetic self-assembling peptides that present bioactive cues "IKVAV" and "RGD" designed from the ECM proteins laminin and fibronectin. The work presented here demonstrates that the addition of agarose to Fmoc-DIKVAV and Fmoc-FRGDF results in physical characteristics that are dependent on agarose concentration. The networks are peptide-dominated at low agarose concentrations, and agarose-dominated at high agarose concentrations, resulting in distinct changes in structural morphology. Interestingly, at mid-range agarose concentration, a hybrid network is formed with structural similarities to both peptide and agarose systems, demonstrating reinforced mechanical properties. Bioactive-LMWG polysaccharide hydrogels demonstrate controllable microenvironmental properties, providing the ability for tissue-specific biomaterial design for tissue engineering and 3D cell culture.


Assuntos
Hidrogéis , Peptídeos , Materiais Biocompatíveis , Fenilalanina , Polissacarídeos
20.
Carbohydr Polym ; 265: 118043, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33966826

RESUMO

Hemorrhage remains a significant cause of morbidity and mortality following trauma and during complex surgeries. A variety of nanomaterials, including oxidized cellulose nanofibers (OCNFs), have been studied to overcome the disadvantages of current commercial topical hemostats. However, the relationship between nano-structural characteristics and hemostatic efficacy of non-oxidized cellulose nanofibers (CNFs) has not been elucidated. Herein, we present the first report of the correlation between structure and hemostatic performance of CNFs. In vitro thromboelastometry studies on CNFs, synthesized by ball-milling, showed that there is an optimum balance point between the aspect ratio (AR) and specific surface area (SSA) of nanofibers in terms of their maximum contribution to platelet function and plasma coagulation. The optimized CNFs with high SSA (17 m2/g) and a high AR (166) shortened normal whole blood clotting time by 68 %, outperforming cellulose-based hemostats. Additionally, CNFs reduced clotting time in platelet-deficient blood (by 80 %) and heparinized blood (by 54 %).


Assuntos
Celulose/química , Hemostáticos/química , Nanofibras/química , Tromboelastografia/métodos , Celulose/farmacologia , Celulose Oxidada/química , Hemorragia/patologia , Hemorragia/terapia , Hemostáticos/farmacologia , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...