Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(3 Pt 1): 031702, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17930258

RESUMO

We have studied the polar structures in the binary mixtures of bent-core liquid crystals P-n-O-PIMB(n-2)*-(n-4)O showing the ferroelectric smectic- CAPF (Sm-CAPF) (n=8 and 10) and antiferroelectric Sm-CSPA (n=9) B2 phase. Although the polar structure of the one-to-one mixture is governed by the compound with longer end chains, it is much more complicated in the mixtures with slightly less fraction of compounds with longer end chains. Even if the mixtures show the antiferroelectric phase before field application, the ferroelectric domains remain once the field is applied and coexist with the antiferroelectric domains. The coexistence structure was modeled by comparing the microscope real image with that of second-harmonic generation. The fraction of the ferroelectric domains is larger at higher temperature region of the B2 phase and decreases with decreasing temperature. The stable phase structures were discussed based on the phenomenological theory. We suggest that the coupling energy of the layer chirality is higher than the energies of the orientation correlations of tilts and polarizations between adjacent layers.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(2 Pt 1): 021704, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17025449

RESUMO

Simple theoretical interpretation has been made on the previously reported odd-even behavior of the emergence of ferroelectricity and antiferroelectricity in homologous series of bent-core mesogens with the same chiral end chains (S,S) ; compounds with even and odd carbon numbers (including oxygen) exhibit ferroelectric and antiferroelectric B2 phases, respectively. The odd-even behavior was confirmed in newly synthesized racemic compounds with chiral end chains of R and S forms (R,S) together with (R,R) and (S,S) forms. According to our theoretical interpretation, ferroelectricity should be more stable in (R,S) compounds than in (S,S) compounds. Actually, the transition temperature from the isotropic phase to the Sm-CP phase was higher and the temperature range of the B2 phase was broader in the (R,S) compound than in the (S,S) compound.

3.
J Am Chem Soc ; 127(31): 11085-91, 2005 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-16076216

RESUMO

Two chiral bent-core mesogens Pn-O-PIMB(n - 2)* (n = 9 and 10) and their oxygen analogues Pn-O-PIMB(n - 2)*-(n - 4)O (n = 8, 9, and 10) with omega-[(S)-amyloxy]alkoxy terminal groups were prepared, and their phase structures were investigated by means of electro-optic, polarization reversal current and second harmonic generation measurements in order to clarify the effect of the interlayer steric interaction on the emergence of polar orderings. The odd-even behavior for the alternative appearance of ferroelectricity and antiferroelectricity was observed in two homologous series; the bent-core mesogens P10-O-PIMB8*, P8-O-PIMB6*-4O, and P10-O-PIMB8*-6O in addition to the previously reported P6-O-PIMB4* and P8-O-PIMB6*, where the length of chains n is even, exhibited ferroelectric phases. On the contrary, the mesogens P7-O-PIMB5*, P9-O-PIMB7*, and P9-O-PIMB7*-5O, where n is odd, showed antiferroelectric phases. It is obvious that the interlayer steric interaction plays a major role for the emergence of a variety of phase structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...