Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Br J Pharmacol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38986570

RESUMO

BACKGROUND AND PURPOSE: Maintaining mitochondrial quality is attracting attention as a new strategy to treat diabetes and diabetic complications. We previously reported that mitochondrial hyperfission by forming a protein complex between dynamin-related protein (Drp) 1 and filamin, mediates chronic heart failure and cilnidipine, initially developed as an L/N-type Ca2+ channel blocker, improves heart failure by inhibiting Drp1-filamin protein complex. We investigated whether cilnidipine improves hyperglycaemia of various diabetic mice models. EXPERIMENTAL APPROACH: Retrospective analysis focusing on haemoglobin A1c (HbA1c) was performed in hypertensive and hyperglycaemic patients taking cilnidipine and amlodipine. After developing diabetic mice by streptozotocin (STZ) treatment, an osmotic pump including drug was implanted intraperitoneally, followed by weekly measurements of blood glucose levels. Mitochondrial morphology was analysed by electron microscopy. A Ca2+ channel-insensitive cilnidipine derivative (1,4-dihydropyridine [DHP]) was synthesized and its pharmacological effect was evaluated using obese (ob/ob) mice fed with high-fat diet (HFD). KEY RESULTS: In patients, cilnidipine was superior to amlodipine in HbA1c lowering effect. Cilnidipine treatment improved systemic hyperglycaemia and mitochondrial morphological abnormalities in STZ-exposed mice, without lowering blood pressure. Cilnidipine failed to improve hyperglycaemia of ob/ob mice, with suppressing insulin secretion. 1,4-DHP improved hyperglycaemia and mitochondria abnormality in ob/ob mice fed HFD. 1,4-DHP and cilnidipine improved basal oxygen consumption rate of HepG2 cells cultured under 25 mM glucose. CONCLUSION AND IMPLICATIONS: Inhibition of Drp1-filamin protein complex formation becomes a new strategy for type 2 diabetes treatment.

2.
J Pharmacol Sci ; 155(4): 121-130, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880546

RESUMO

The atrophic myocardium resulting from mechanical unloading and nutritional deprivation is considered crucial as maladaptive remodeling directly associated with heart failure, as well as interstitial fibrosis. Conversely, myocardial hypertrophy resulting from hemodynamic loading is perceived as compensatory stress adaptation. We previously reported the abundant presence of highly redox-active polysulfide molecules, termed supersulfide, with two or more sulfur atoms catenated in normal hearts, and the supersulfide catabolism in pathologic hearts after myocardial infarction correlated with worsened prognosis of heart failure. However, the impact of supersulfide on myocardial remodeling remains unclear. Here, we investigated the involvement of supersulfide metabolism in cardiomyocyte remodeling, using a model of adenosine 5'-triphosphate (ATP) receptor-stimulated atrophy and endothelin-1 receptor-stimulated hypertrophy in neonatal rat cardiomyocytes. Results revealed contrasting changes in intracellular supersulfide and its catabolite, hydrogen sulfide (H2S), between cardiomyocyte atrophy and hypertrophy. Stimulation of cardiomyocytes with ATP decreased supersulfide activity, while H2S accumulation itself did not affect cardiomyocyte atrophy. This supersulfide catabolism was also involved in myofibroblast formation of neonatal rat cardiac fibroblasts. Thus, unraveling supersulfide metabolism during myocardial remodeling may lead to the development of novel therapeutic strategies to improve heart failure.


Assuntos
Sulfeto de Hidrogênio , Miócitos Cardíacos , Sulfetos , Remodelação Ventricular , Animais , Miócitos Cardíacos/metabolismo , Sulfetos/metabolismo , Sulfetos/farmacologia , Sulfeto de Hidrogênio/metabolismo , Células Cultivadas , Trifosfato de Adenosina/metabolismo , Ratos , Atrofia , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Animais Recém-Nascidos , Ratos Sprague-Dawley
3.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791484

RESUMO

Lipid droplet (LD) accumulation in hepatocytes is one of the major symptoms associated with fatty liver disease. Mitochondria play a key role in catabolizing fatty acids for energy production through ß-oxidation. The interplay between mitochondria and LD assumes a crucial role in lipid metabolism, while it is obscure how mitochondrial morphology affects systemic lipid metabolism in the liver. We previously reported that cilnidipine, an already existing anti-hypertensive drug, can prevent pathological mitochondrial fission by inhibiting protein-protein interaction between dynamin-related protein 1 (Drp1) and filamin, an actin-binding protein. Here, we found that cilnidipine and its new dihydropyridine (DHP) derivative, 1,4-DHP, which lacks Ca2+ channel-blocking action of cilnidipine, prevent the palmitic acid-induced Drp1-filamin interaction, LD accumulation and cytotoxicity of human hepatic HepG2 cells. Cilnidipine and 1,4-DHP also suppressed the LD accumulation accompanied by reducing mitochondrial contact with LD in obese model and high-fat diet-fed mouse livers. These results propose that targeting the Drp1-filamin interaction become a new strategy for the prevention or treatment of fatty liver disease.


Assuntos
Di-Hidropiridinas , Dinaminas , Gotículas Lipídicas , Fígado , Animais , Dinaminas/metabolismo , Humanos , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/efeitos dos fármacos , Camundongos , Células Hep G2 , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Di-Hidropiridinas/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Dinâmica Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos
4.
Free Radic Res ; 58(5): 323-332, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38733204

RESUMO

While cysteine (CysSH) is known to be exported into the extracellular space, its biological significance is not well understood. The present study examined the movement of extracellular CysSH using stable isotope-labeled cystine (CysSSCys), which is transported into cells and reduced to CysSH. Exposure of HepG2 cells to 100 µM stable isotope-labeled CysSSCys resulted in 70 µM labeled CysSH in cell medium 1 h after CysSSCys exposure. When the cell medium was collected and incubated with either hydrogen peroxide (H2O2) or atmospheric electrophiles, such as 1,2-naphthoquinone, 1,4-naphthoquinone and 1,4-benzoquinone, CysSH in the cell medium was almost completely consumed. In contrast, extracellular levels of CysSH were unaltered during exposure of HepG2 cells to H2O2 for up to 2 h, suggesting redox cycling of CysSSCys/CysSH in the cell system. Experiments with and without changing cell medium containing CysSH from HepG2 cells revealed that oxidative and electrophilic modifications of cellular proteins, caused by exposure to H2O2 and 1,2-naphthoquinone, were significantly repressed by CysSH in the medium. We also examined participation of enzymes and/or antioxidants in intracellular reduction of CysSSCys to CysSH. These results provide new findings that extracellular CysSH derived from CysSSCys plays a role in the regulation of oxidative and electrophilic stress.


Assuntos
Cisteína , Cistina , Peróxido de Hidrogênio , Estresse Oxidativo , Humanos , Cisteína/metabolismo , Cisteína/farmacologia , Células Hep G2 , Estresse Oxidativo/efeitos dos fármacos , Cistina/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Naftoquinonas/farmacologia , Oxirredução , Benzoquinonas/farmacologia
5.
J Pharmacol Sci ; 155(3): 75-83, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797536

RESUMO

Sulfur-based redox signaling has long attracted attention as critical mechanisms underlying the development of cardiac diseases and resultant heart failure. Especially, post-translational modifications of cysteine (Cys) thiols in proteins mediate oxidative stress-dependent cardiac remodeling including myocardial hypertrophy, senescence, and interstitial fibrosis. However, we recently revealed the existence of Cys persulfides and Cys polysulfides in cells and tissues, which show higher redox activities than Cys and substantially contribute to redox signaling and energy metabolism. We have established simple evaluation methods that can detect polysulfides in proteins and inorganic polysulfides in cells and revealed that polysulfides abundantly expressed in normal hearts are dramatically catabolized by exposure to ischemic/hypoxic and environmental electrophilic stress, which causes vulnerability of the heart to mechanical load. Accumulation of hydrogen sulfide, a nucleophilic catabolite of persulfides/polysulfides, may lead to reductive stress in ischemic hearts, and perturbation of polysulfide catabolism can improve chronic heart failure after myocardial infarction in mice. This review focuses on the (patho)physiological role of sulfur metabolism in hearts, and proposes that sulfur catabolism during ischemic/hypoxic stress has great potential as a new therapeutic strategy for the treatment of ischemic heart failure.


Assuntos
Cisteína , Insuficiência Cardíaca , Sulfeto de Hidrogênio , Oxirredução , Sulfetos , Enxofre , Insuficiência Cardíaca/metabolismo , Animais , Humanos , Sulfetos/metabolismo , Enxofre/metabolismo , Sulfeto de Hidrogênio/metabolismo , Cisteína/metabolismo , Estresse Oxidativo , Transdução de Sinais , Processamento de Proteína Pós-Traducional , Camundongos , Terapia de Alvo Molecular , Metabolismo Energético , Miocárdio/metabolismo
6.
Fluids Barriers CNS ; 21(1): 32, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584257

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which is associated with various neurological symptoms, including nausea, dizziness, headache, encephalitis, and epileptic seizures. SARS-CoV-2 is considered to affect the central nervous system (CNS) by interacting with the blood-brain barrier (BBB), which is defined by tight junctions that seal paracellular gaps between brain microvascular endothelial cells (BMECs). Although SARS-CoV-2 infection of BMECs has been reported, the detailed mechanism has not been fully elucidated. METHODS: Using the original strain of SARS-CoV-2, the infection in BMECs was confirmed by a detection of intracellular RNA copy number and localization of viral particles. BMEC functions were evaluated by measuring transendothelial electrical resistance (TEER), which evaluates the integrity of tight junction dynamics, and expression levels of proinflammatory genes. BMEC signaling pathway was examined by comprehensive RNA-seq analysis. RESULTS: We observed that iPSC derived brain microvascular endothelial like cells (iPSC-BMELCs) were infected with SARS-CoV-2. SARS-CoV-2 infection resulted in decreased TEER. In addition, SARS-CoV-2 infection decreased expression levels of tight junction markers CLDN3 and CLDN11. SARS-CoV-2 infection also increased expression levels of proinflammatory genes, which are known to be elevated in patients with COVID-19. Furthermore, RNA-seq analysis revealed that SARS-CoV-2 dysregulated the canonical Wnt signaling pathway in iPSC-BMELCs. Modulation of the Wnt signaling by CHIR99021 partially inhibited the infection and the subsequent inflammatory responses. CONCLUSION: These findings suggest that SARS-CoV-2 infection causes BBB dysfunction via Wnt signaling. Thus, iPSC-BMELCs are a useful in vitro model for elucidating COVID-19 neuropathology and drug development.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Humanos , SARS-CoV-2 , Via de Sinalização Wnt , Células Endoteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Encéfalo/irrigação sanguínea , Barreira Hematoencefálica/metabolismo
7.
Nat Commun ; 15(1): 2453, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503758

RESUMO

Reactive sulfane sulfur species such as persulfides (RSSH) and H2S2 are important redox regulators and closely linked to H2S signaling. However, the study of these species is still challenging due to their instability, high reactivity, and the lack of suitable donors to produce them. Herein we report a unique compound, 2H-thiopyran-2-thione sulfine (TTS), which can specifically convert H2S to HSOH, and then to H2S2 in the presence of excess H2S. Meanwhile, the reaction product 2H-thiopyran-2-thione (TT) can be oxidized to reform TTS by biological oxidants. The reaction mechanism of TTS is studied experimentally and computationally. TTS can be conjugated to proteins to achieve specific delivery, and the combination of TTS and H2S leads to highly efficient protein persulfidation. When TTS is applied in conjunction with established H2S donors, the corresponding donors of H2S2 (or its equivalents) are obtained. Cell-based studies reveal that TTS can effectively increase intracellular sulfane sulfur levels and compensate for certain aspects of sulfide:quinone oxidoreductase (SQR) deficiency. These properties make TTS a conceptually new strategy for the design of donors of reactive sulfane sulfur species.


Assuntos
Sulfeto de Hidrogênio , Piranos , Compostos de Sulfidrila , Sulfeto de Hidrogênio/metabolismo , Tionas , Sulfetos/metabolismo , Enxofre/metabolismo , Oxirredução , Proteínas/metabolismo
8.
J Biochem ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507681

RESUMO

Morphological and structural remodeling of the heart, including cardiac hypertrophy and fibrosis, has been considered a therapeutic target for heart failure for approximately three decades. Groundbreaking heart failure medications demonstrating reverse remodeling effects have contributed significantly to medical advancements. However, nearly 50% of heart failure patients still exhibit drug resistance, posing a challenge to the healthcare system. Recently, characteristics of heart failure resistant to ARBs and ß-blockers have been defined, highlighting preserved systolic function despite impaired diastolic function, leading to the classification of heart failure with preserved ejection fraction (HFpEF). The pathogenesis and etiology of HFpEF may be related to metabolic abnormalities, as evidenced by its mimicry through endothelial dysfunction and excessive intake of high-fat diets. Our recent findings indicate a significant involvement of mitochondrial hyper-fission in the progression of heart failure. This mitochondrial pathological remodeling is associated with redox imbalance, especially hydrogen sulfide accumulation due to abnormal electron leak in myocardium. In this review, we also introduce a novel therapeutic strategy for heart failure from the current perspective of mitochondrial redox-metabolic remodeling.

9.
Int J Mol Sci ; 25(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38397074

RESUMO

We recently reported that transient receptor potential canonical (TRPC) 6 channel activity contributes to intracellular Zn2+ homeostasis in the heart. Zn2+ has also been implicated in the regulation of intestinal redox and microbial homeostasis. This study aims to investigate the role of TRPC6-mediated Zn2+ influx in the stress resistance of the intestine. The expression profile of TRPC1-C7 mRNAs in the actively inflamed mucosa from inflammatory bowel disease (IBD) patients was analyzed using the GEO database. Systemic TRPC3 knockout (KO) and TRPC6 KO mice were treated with dextran sulfate sodium (DSS) to induce colitis. The Zn2+ concentration and the mRNA expression levels of oxidative/inflammatory markers in colon tissues were quantitatively analyzed, and gut microbiota profiles were compared. TRPC6 mRNA expression level was increased in IBD patients and DSS-treated mouse colon tissues. DSS-treated TRPC6 KO mice, but not TRPC3 KO mice, showed severe weight loss and increased disease activity index compared with DSS-treated WT mice. The mRNA abundances of antioxidant proteins were basically increased in the TRPC6 KO colon, with changes in gut microbiota profiles. Treatment with TRPC6 activator prevented the DSS-induced colitis progression accompanied by increasing Zn2+ concentration. We suggest that TRPC6-mediated Zn2+ influx activity plays a key role in stress resistance against IBD, providing a new strategy for treating colitis.


Assuntos
Doenças Inflamatórias Intestinais , Canal de Cátion TRPC6 , Animais , Humanos , Camundongos , Colo/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Intestinos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Canal de Cátion TRPC6/genética , Canal de Cátion TRPC6/metabolismo
10.
J Pharmacol Sci ; 154(2): 127-135, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246726

RESUMO

Smoking is one of the most serious risk factors for cardiovascular diseases. Although cigarette mainstream and sidestream smoke are significant contributors to increased cardiovascular mortality and morbidity, the underlying mechanism is still unclear. Here, we report that exposure of rat neonatal cardiomyocytes to cigarette smoke extract (CSE) induces mitochondrial hyperfission-mediated myocardial senescence. CSE leads to mitochondrial fission and reactive oxygen species (ROS) production through the complex formation between mitochondrial fission factor Drp1 and actin-binding protein, filamin A. Pharmacological perturbation of interaction between Drp1 and filamin A by cilnidipine and gene knockdown of Drp1 or filamin A inhibited CSE-induced mitochondrial hyperfission and ROS production as well as myocardial senescence. We previously reported that Drp1 activity is controlled by supersulfide-induced Cys644 polysulfidation. The redox-sensitive Cys644 was critical for CSE-mediated interaction with filamin A. The administration of supersulfide donor, Na2S3 also improved mitochondrial hyperfission-mediated myocardial senescence induced by CSE. Our results suggest the important role of Drp1-filamin A complex formation on cigarette smoke-mediated cardiac risk and the contribution of supersulfide to mitochondrial fission-associated myocardial senescence.


Assuntos
Fumar Cigarros , Miócitos Cardíacos , Animais , Ratos , Filaminas , Mitocôndrias , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA