Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 8(48): 84434-84448, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29137437

RESUMO

Esophageal squamous cell carcinoma (ESCC) is associated with the accumulation of genetic and epigenetic changes in the background mucosa. Dysregulated DNA methylation is known to lead to the inactivation of tumor suppressor genes and the activation of oncogenes. To identify the genes whose expression is perturbed by abnormal DNA methylation in ESCC, integrative transcriptomics by serial analysis of gene expression (SAGE) and methylome sequencing by methyl-DNA immunoprecipitation (MeDIP) analysis were performed. We found 159 genes with significantly decreased expression in ESCC compared to that in noncancerous esophageal mucosa. MeDIP-seq analysis identified hypermethylation in the promoter region of 56 of these genes. Using surgically resected tissues of 40 cases, we confirmed that the paired-like homeodomain 1 (PITX1) gene was hypermethylated in ESCC compared to that in normal tissues (P < 0.0001) by pyrosequencing. PITX1 overexpression in ESCC cell lines inhibited cell growth and colony formation, whereas PITX1 knockdown accelerated cell growth. A PITX1-transfected ESCC cell line, KYSE30, formed smaller tumors in nude mice than in mock-transfected cells. Hypermethylation of PITX1 was associated with tumor depth (P = 0.0011) and advanced tumor stage (P = 0.0052) and predicted poor survival in ESCC (hazard ratio, 0.1538; 95% confidence interval, 0.03159-0.7488; P = 0.0169). In this study, we found a novel tumor suppressor gene of ESCC, PITX1, which is silenced by DNA hypermethylation. Downregulation of PITX1 contributes to the growth and progression of ESCC. Hypermethylation of the PITX1 in ESCC correlated with tumor progression and advanced stage cancer, and may predict a poor prognosis.

2.
Genome Biol ; 16: 22, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25723102

RESUMO

The FANTOM5 project investigates transcription initiation activities in more than 1,000 human and mouse primary cells, cell lines and tissues using CAGE. Based on manual curation of sample information and development of an ontology for sample classification, we assemble the resulting data into a centralized data resource (http://fantom.gsc.riken.jp/5/). This resource contains web-based tools and data-access points for the research community to search and extract data related to samples, genes, promoter activities, transcription factors and enhancers across the FANTOM5 atlas.


Assuntos
Genômica/métodos , Regiões Promotoras Genéticas , Software , Iniciação da Transcrição Genética , Animais , Biologia Computacional/métodos , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Humanos , Camundongos , Transcriptoma , Interface Usuário-Computador
3.
ACS Synth Biol ; 3(3): 192-6, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24364365

RESUMO

Synthetic promoters can control a gene's timing, location, and expression level. The PromoterCAD web server ( http://promotercad.org ) allows the design of synthetic promoters to control plant gene expression, by novel arrangement of cis-regulatory elements. Recently, we have expanded PromoterCAD's scope with additional plant and animal data: (1) PLACE (Plant Cis-acting Regulatory DNA Elements), including various sized sequence motifs; (2) PEDB (Mammalian Promoter/Enhancer Database), including gene expression data for mammalian tissues. The plant PromoterCAD data now contains 22 000 Arabidopsis thaliana genes, 2 200 000 microarray measurements in 20 growth conditions and 79 tissue organs and developmental stages, while the new mammalian PromoterCAD data contains 679 Mus musculus genes and 65 000 microarray measurements in 96 tissue organs and cell types ( http://promotercad.org/mammal/ ). This work presents step-by-step instructions for adding both regulatory motif and gene expression data to PromoterCAD, to illustrate how users can expand PromoterCAD functionality for their own applications and organisms.


Assuntos
Biologia Computacional/métodos , Internet , Regiões Promotoras Genéticas/genética , Software , Biologia Sintética/métodos , Animais , Linhagem Celular , Bases de Dados Genéticas , Mamíferos/genética , Plantas/genética
4.
Nucleic Acids Res ; 41(Web Server issue): W569-74, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23766287

RESUMO

Synthetic promoters can control the timing, location and amount of gene expression for any organism. PromoterCAD is a web application for designing synthetic promoters with altered transcriptional regulation. We use a data-first approach, using published high-throughput expression and motif data from for Arabidopsis thaliana to guide DNA design. We demonstrate data mining tools for finding motifs related to circadian oscillations and tissue-specific expression patterns. PromoterCAD is built on the LinkData open platform for data publication and rapid web application development, allowing new data to be easily added, and the source code modified to add new functionality. PromoterCAD URL: http://promotercad.org. LinkData URL: http://linkdata.org.


Assuntos
DNA de Plantas/química , Regulação da Expressão Gênica de Plantas , Regiões Promotoras Genéticas , Software , Arabidopsis/genética , Mineração de Dados , Expressão Gênica , Internet , Motivos de Nucleotídeos , Transcrição Gênica
5.
Nucleic Acids Res ; 41(Web Server issue): W109-14, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23761449

RESUMO

Positional MEDLINE (PosMed; http://biolod.org/PosMed) is a powerful Semantic Web Association Study engine that ranks biomedical resources such as genes, metabolites, diseases and drugs, based on the statistical significance of associations between user-specified phenotypic keywords and resources connected directly or inferentially through a Semantic Web of biological databases such as MEDLINE, OMIM, pathways, co-expressions, molecular interactions and ontology terms. Since 2005, PosMed has long been used for in silico positional cloning studies to infer candidate disease-responsible genes existing within chromosomal intervals. PosMed is redesigned as a workbench to discover possible functional interpretations for numerous genetic variants found from exome sequencing of human disease samples. We also show that the association search engine enhances the value of mouse bioresources because most knockout mouse resources have no phenotypic annotation, but can be associated inferentially to phenotypes via genes and biomedical documents. For this purpose, we established text-mining rules to the biomedical documents by careful human curation work, and created a huge amount of correct linking between genes and documents. PosMed associates any phenotypic keyword to mouse resources with 20 public databases and four original data sets as of May 2013.


Assuntos
Genes , Fenótipo , Software , Animais , Interpretação Estatística de Dados , Bases de Dados Factuais , Exoma , Estudos de Associação Genética , Variação Genética , Humanos , Internet , Camundongos , Camundongos Knockout
6.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 5): 914-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23633602

RESUMO

Information from structural genomics experiments at the RIKEN SPring-8 Center, Japan has been compiled and published as an integrated database. The contents of the database are (i) experimental data from nine species of bacteria that cover a large variety of protein molecules in terms of both evolution and properties (http://database.riken.jp/db/bacpedia), (ii) experimental data from mutant proteins that were designed systematically to study the influence of mutations on the diffraction quality of protein crystals (http://database.riken.jp/db/bacpedia) and (iii) experimental data from heavy-atom-labelled proteins from the heavy-atom database HATODAS (http://database.riken.jp/db/hatodas). The database integration adopts the semantic web, which is suitable for data reuse and automatic processing, thereby allowing batch downloads of full data and data reconstruction to produce new databases. In addition, to enhance the use of data (i) and (ii) by general researchers in biosciences, a comprehensible user interface, Bacpedia (http://bacpedia.harima.riken.jp), has been developed.


Assuntos
Bases de Dados Factuais , Proteínas/química , Proteínas/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalização , Genômica/métodos , Internet , Japão , Interface Usuário-Computador
7.
Biochemistry ; 51(30): 5958-66, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22757657

RESUMO

The complex of sensory rhodopsin II (SRII) and its cognate transducer HtrII (2:2 SRII-HtrII complex) consists of a photoreceptor and its signal transducer, respectively, associated with negative phototaxis in extreme halophiles. In this study to investigate how photoexcitation in SRII affects the structures of the complex, we conducted two series of molecular dynamics simulations of the complex of SRII and truncated HtrII (residues 1-136) of Natronomonas pharaonis linked with a modeled HAMP domain in the lipid bilayer using the two crystal structures of the ground state and the M-intermediate state as the starting structures. The simulation results showed significant enhancements of the structural differences observed between the two crystal structures. Helix F of SRII showed an outward motion, and the C-terminal end of transmembrane domain 2 (TM2) in HtrII rotated by ∼10°. The most significant structural changes were observed in the overall orientations of the two SRII molecules, closed in the ground state and open in the M-state. This change was attributed to substantial differences in the structure of the four-helix bundle of the HtrII dimer causing the apparent rotation of TM2. These simulation results established the structural basis for the various experimental observations explaining the structural differences between the ground state and the M-intermediate state.


Assuntos
Proteínas Arqueais/química , Simulação por Computador , Halorrodopsinas/química , Modelos Moleculares , Rodopsinas Sensoriais/química , Proteínas Arqueais/fisiologia , Cristalografia por Raios X/métodos , Halorrodopsinas/fisiologia , Simulação de Dinâmica Molecular , Natronobacterium/química , Estrutura Terciária de Proteína , Rodopsinas Sensoriais/fisiologia
8.
Nucleic Acids Res ; 39(Database issue): D861-70, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21076152

RESUMO

The RIKEN integrated database of mammals (http://scinets.org/db/mammal) is the official undertaking to integrate its mammalian databases produced from multiple large-scale programs that have been promoted by the institute. The database integrates not only RIKEN's original databases, such as FANTOM, the ENU mutagenesis program, the RIKEN Cerebellar Development Transcriptome Database and the Bioresource Database, but also imported data from public databases, such as Ensembl, MGI and biomedical ontologies. Our integrated database has been implemented on the infrastructure of publication medium for databases, termed SciNetS/SciNeS, or the Scientists' Networking System, where the data and metadata are structured as a semantic web and are downloadable in various standardized formats. The top-level ontology-based implementation of mammal-related data directly integrates the representative knowledge and individual data records in existing databases to ensure advanced cross-database searches and reduced unevenness of the data management operations. Through the development of this database, we propose a novel methodology for the development of standardized comprehensive management of heterogeneous data sets in multiple databases to improve the sustainability, accessibility, utility and publicity of the data of biomedical information.


Assuntos
Bases de Dados Factuais , Bases de Dados Genéticas , Mamíferos/genética , Animais , Humanos , Internet , Mamíferos/metabolismo , Camundongos , Integração de Sistemas , Interface Usuário-Computador
9.
Biophysics (Nagoya-shi) ; 6: 27-36, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-27857583

RESUMO

The halobacterial transducer of sensory rhodopsin II (HtrII) is a photosignal transducer associated with phototaxis in extreme halophiles. The HAMP domain, a linker domain in HtrII, is considered to play an important role in transferring the signal from the membrane to the cytoplasmic region, although its structure in the complex remains undetermined. To establish the structural basis for understanding the mechanism of signal transduction, we present an atomic model of the structure of the N-terminal HAMP domain from Natronomonas pharaonis (HtrII: 84-136), based on molecular dynamics (MD) simulations. The model was built by homology modeling using the NMR structure of Af1503 from Archaeoglobus fulgidus as a template. The HAMP domains of Af1503 and HtrII were stable during MD simulations over 100 ns. Quantitative analyses of inter-helical packing indicated that the Af1503 HAMP domain stably maintained unusual knobs-to-knobs packing, as observed in the NMR structure, while the bulky side-chains of HtrII shifted the packing state to canonical knobs-into-holes. The role of the connector loop in maintaining structural stability was also discussed using MD simulations of loop deletion mutants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...