RESUMO
Toxoplasma gondii is a global protozoan pathogen. Clonal lineages predominate in Europe, North America, Africa, and China, whereas highly recombinant parasites are endemic in South/Central America. Far East Asian T. gondii isolates are not included in current global population genetic structure analyses at WGS resolution. Here we report a genome-wide population study that compared eight Japanese and two Chinese isolates against representative worldwide T. gondii genomes using POPSICLE, a novel population structure analyzing software. Also included were 7 genomes resurrected from non-viable isolates by target enrichment sequencing. Visualization of the genome structure by POPSICLE shows a mixture of Chinese haplogroup (HG) 13 haploblocks introgressed within the genomes of Japanese HG2 and North American HG12. Furthermore, two ancestral lineages were identified in the Japanese strains; one lineage shares a common ancestor with HG11 found in both Japanese strains and North American HG12. The other ancestral lineage, found in T. gondii isolates from a small island in Japan, is admixed with genetically diversified South/Central American strains. Taken together, this study suggests multiple ancestral links between Far East Asian and American T. gondii strains and provides insight into the transmission history of this cosmopolitan organism.
Assuntos
Genoma de Protozoário , Filogenia , Toxoplasma , Toxoplasma/genética , Toxoplasma/classificação , Humanos , América do Norte , Genoma de Protozoário/genética , Toxoplasmose/parasitologia , China , América Central , Japão , Haplótipos , Variação Genética , Recombinação GenéticaRESUMO
Neospora caninum is one of the main causes of bovine abortions worldwide, including Japan. Nothing is known about the N. caninum population substructures in Japan, and only one isolate from a pregnant sheep has been studied to date. This study describes, for the first time, the genetic characterization of isolates of N. caninum implicated in cattle abortions in Japan. Brains from five aborted fetuses were successfully genotyped based on multilocus microsatellite markers. Assigned genotypes showed high frequencies of mixed alleles in the sequenced markers MS7 and MS10, raising concerns about the subpopulation structures of N. caninum infecting animals in Japan. Clustering analysis of the genotypes, together with those from a previous dataset, showed that five of the six genotypes were distinct from other clusters. Meanwhile, the remaining genotype, together with the sheep isolate from Japan, was grouped with those from Mexico and Spain. These preliminary data may indicate a complex transmission pattern of N. caninum in Japan via clonal spreading by vertical and horizontal transmission and geographically related population substructuring.