Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(39): 51164-51196, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39155346

RESUMO

Antibiotic contamination poses a significant global concern due to its far-reaching impact on public health and the environment. This comprehensive review delves into the prevalence of various antibiotic classes in environmental pollution and their interactions with natural ecosystems. Fluoroquinolones, macrolides, tetracyclines, and sulphonamides have emerged as prevalent contaminants in environmental matrices worldwide. The concentrations of these antibiotics vary across diverse environments, influenced by production practices, consumer behaviours, and socio-economic factors. Low- and low-middle-income countries face unique challenges in managing antibiotic contamination, with dominant mechanisms like hydrolysis, sorption, and biodegradation leading to the formation of toxic byproducts. Ecotoxicity reports reveal the detrimental effects of these byproducts on aquatic and terrestrial ecosystems, further emphasizing the gravity of the issue. Notably, monitoring the antibiotic parent compound alone may be inadequate for framing effective control and management strategies for antibiotic pollution. This review underscores the imperative of a comprehensive, multi-sectoral approach to address environmental antibiotic contamination and combat antimicrobial resistance. It also advocates for the development and implementation of tailored national action plans that consider specific environmental conditions and factors. Thus, an approach is crucial for safeguarding both public health and the delicate balance of our natural ecosystems.


Assuntos
Antibacterianos , Poluição Ambiental , Monitoramento Ambiental , Ecossistema , Poluentes Ambientais/toxicidade
2.
Environ Monit Assess ; 195(8): 942, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37436551

RESUMO

This review highlights various experimental and mathematical modeling strategies to investigate the fate and transport of antibiotics that elucidate antimicrobial selective pressure in aquatic environments. Globally, the residual antibiotic concentrations in effluents from bulk drug manufacturing industries were 30- and 1500-fold greater than values reported in municipal and hospital effluents, respectively. The antibiotic concentration from different effluents enters the waterbodies that usually get diluted as they go downstream and undergo various abiotic and biotic reactive processes. In aquatic systems, photolysis is the predominant process for antibiotic reduction in the water matrix, while hydrolysis and sorption are frequently reported in the sediment compartment. The rate of antibiotic reduction varies widely with influencing factors such as the chemical properties of the antibiotics and hydrodynamic conditions of river streams. Among all, tetracycline was found to more unstable (log Kow = - 0.62 to - 1.12) that can readily undergo photolysis and hydrolysis; whereas macrolides were more stable (log Kow = 3.06 to 4.02) that are prone to biodegradation. The processes like photolysis, hydrolysis, and biodegradation followed first-order reaction kinetics while the sorption followed a second-order kinetics for most antibiotic classes with reaction rates occurring in the decreasing order of Fluoroquinolones and Sulphonamides. The reports from various experiments on abiotic and biotic processes serve as input parameters for an integrated mathematical modeling to predict the fate of the antibiotics in the aquatic environment. Various mathematical models viz. Fugacity level IV, RSEMM, OTIS, GREAT-ER, SWAT, QWASI, and STREAM-EU are discussed for their potential capabilities. However, these models do not account for microscale interactions of the antibiotics and microbial community under real-field conditions. Also, the seasonal variations for contaminant concentrations that exert selective pressure for antimicrobial resistance has not been accounted. Addressing these aspects collectively is the key to exploring the emergence of antimicrobial resistance. Therefore, a comprehensive model involving antimicrobial resistance parameters like fitness cost, bacterial population dynamics, conjugation transfer efficiency, etc. is required to predict the fate of antibiotics.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Antibacterianos/análise , Monitoramento Ambiental , Fluoroquinolonas , Rios/química , Modelos Teóricos , Poluentes Químicos da Água/análise
3.
Bull Environ Contam Toxicol ; 111(1): 4, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37347310

RESUMO

Wetland plants are gaining interest as potential agents for removing emerging contaminants. However, there have been limited studies examining the ability of these plant species to remove antibiotics and their tolerance to stress. This study aimed to investigate the potential of Canna indica, an indigenous wetland plant species in India, for tetracycline-induced oxidative stress, antioxidant activity, and removal of antibiotics from nutrient media and domestic wastewater. Canna indica exhibited a removal rate of approximately 91.05 ± 0.18% for tetracycline in antibiotic containing nutrient media and 87.97 ± 0.39% in domestic wastewater. Notably, the exposure to the drug during the 30 d reaction period led to the accumulation of reactive oxygen species in the plant tissues. Consequently, there was a decline in chlorophyll content, alongside an increase in antioxidant activity, membrane permeability, and K + ion leakage. These findings emphasize the importance of monitoring tolerance levels induced by antibiotics in plant species. Thus, monitoring the antibiotic-induced-tolerance levels in plant species is crucial for maintaining plant health and effectively managing abiotic stress, ensuring efficient recovery and facilitating an effective wetland treatment system.


Assuntos
Antioxidantes , Zingiberales , Hidroponia , Águas Residuárias , Tetraciclina/toxicidade , Antibacterianos/toxicidade , Áreas Alagadas , Biodegradação Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA