Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(11)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38004935

RESUMO

This study introduces a novel method for producing Ag nanoclusters (NCs) within GeO2-PbO glasses doped with Tm3+ ions. Sample preparation involved the melt-quenching method, employing adequate heat treatment to facilitate Ag NC formation. Absorption spectroscopy confirmed trivalent rare-earth ion incorporation. Ag NC identification and the amorphous structure were observed using transmission electron microscopy. A tunable visible emission from blue to the yellow region was observed. The energy transfer mechanism from Ag NCs to Tm3+ ions was demonstrated by enhanced 800 nm emission under 380 and 400 nm excitations, mainly for samples with a higher concentration of Ag NCs; moreover, the long lifetime decrease of Ag NCs at 600 nm (excited at 380 and 400 nm) and the lifetime increase of Tm3+ ions at 800 nm (excitation of 405 nm) corroborated the energy transfer between those species. Therefore, we attribute this energy transfer mechanism to the decay processes from S1→T1 and T1→S0 levels of Ag NCs to the 3H4 level of Tm3+ ions serving as the primary path of energy transfer in this system. GeO2-PbO glasses demonstrated potential as materials to host Ag NCs with applications for photonics as solar cell coatings, wideband light sources, and continuous-wave tunable lasers in the visible spectrum, among others.

2.
Nanomaterials (Basel) ; 13(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37049270

RESUMO

This work investigates the optical properties of Yb3+ ions doped GeO2-PbO glasses containing Ag nanoclusters (NCs), produced by the melt-quenching technique. The lack in the literature regarding the energy transfer (ET) between these species in these glasses motivated the present work. Tunable visible emission occurs from blue to orange depending on the Yb3+ concentration which affects the size of the Ag NCs, as observed by transmission electron microscopy. The ET mechanism from Ag NCs to Yb3+ ions (2F7/2 → 2F5/2) was attributed to the S1→T1 decay (spin-forbidden electronic transition between singlet-triplet states) and was corroborated by fast and slow lifetime decrease (at 550 nm) of Ag NCs and photoluminescence (PL) growth at 980 nm, for excitations at 355 and 405 nm. The sample with the highest Yb3+ concentration exhibits the highest PL growth under 355 nm excitation, whereas at 410 nm it is the sample with the lowest concentration. The restriction of Yb3+ ions to the growth of NCs is responsible for these effects. Thus, higher Yb3+ concentration forms smaller Ag NCs, whose excitation at 355 nm leads to more efficient ET to Yb3+ ions compared to 410 nm. These findings have potential applications in the visible to near-infrared regions, such as tunable CW laser sources and photovoltaic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...