Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 262: 115177, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37354569

RESUMO

Understanding the fate of the vertical distribution of radiocesium (137Cs) in Japanese forest soils is key to assessing the radioecological consequences of the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. The 137Cs behavior in mineral soil is known to be primarily governed by interaction with clay minerals; however, some observations suggest the role of soil organic matter (SOM) in enhancing the mobility of 137Cs. Here we hypothesized that soil organic carbon (SOC) concentration profile determines the ultimate vertical pattern of 137Cs distribution in Japanese forest soils. In testing this hypothesis, we obtained soil samples that were collected before the FDNPP accident at four forest sites with varying SOC concentration profiles and quantified the detailed vertical profile of 137Cs inventory in the soils roughly half a century after global fallout in the early 1960 s. Results showed that the higher the SOC concentration in the soil profile, the deeper the 137Cs downward penetration. On the basis of the data for surface soils (0-10 cm), the 137Cs retention ratio for each of the 2-cm thick layers was evaluated as the ratio of 137Cs inventory in the target soil layer to the total 137Cs inventory in and below the soil layer. A negative correlation was found between the ratio and SOC concentration of the layer across all soils and depths. This indicates that the ultimate fate of 137Cs vertical distribution can be predicted as a function of SOC concentration for Japanese forest soils, and provides further evidence for SOM effects on the mobility and bioavailability of 137Cs in soils.

2.
J Environ Radioact ; 238-239: 106725, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34461367

RESUMO

The Fukushima Dai-ichi Nuclear Power Plant accident caused serious 137Cs contamination in mountainous forest areas. To understand the spatial variation in soil 137Cs inventory in complex mountainous topography and the influencing factors, a whole-area investigation of 137Cs deposition in a broad-leaved forest catchment of a mountain stream was conducted using grid sampling. Across the catchment, organic and surface mineral soil layers were collected at 42 locations in 2013 and 6 locations in 2015. Cesium-137 deposition on the forest floor exhibited high spatial heterogeneity and altitude-dependent distribution over the catchment. The 137Cs retention ratio in the organic layer, determined as the inventory in the organic layer divided by the soil (organic and mineral soil layers) inventory, ranged from 6% to 82% in 2013, and the coefficient of variation was 0.6. The 137Cs retention ratios had positive correlations with the material inventory in the organic layer and the elevation. The 137Cs retention ratios in the organic layer were less than 20% in 2015, even at the locations where the retention ratio was higher than 55% in 2013. Although there was spatial variation in the migration speed, 137Cs migration from the organic layer to mineral soil was almost completed within 4 y of the deposition, suggesting a decrease in 137Cs circulation within the forest ecosystem. This study also examined a relationship between the 137Cs inventory and the air dose rate to assess the potential of using the air dose rate to estimate soil 137Cs inventory. Soil 137Cs inventories and air dose rates were highly positively correlated, indicating that measurement of air dose rate can provide an easier and quicker alternative to measurement of soil 137Cs inventory in forest ecosystems.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos do Solo , Radioisótopos de Césio/análise , Ecossistema , Florestas , Japão , Solo , Poluentes Radioativos do Solo/análise
3.
Sci Rep ; 10(1): 6614, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313049

RESUMO

The Fukushima Daiichi nuclear power plant accident caused serious radiocesium (137Cs) contamination of forest ecosystems over a wide area. The removal of the forest floor litter layer has been considered a potential method for forest decontamination; however, its effectiveness remains largely unknown. We conducted a pilot-scale decontamination study in a deciduous broadleaved forest in Fukushima. The entire forest was decontaminated by removing the litter layer in July 2014, approximately 3.3 years after the accident, with the exception of two untreated plots. For three years after decontamination, we quantified 137Cs contamination levels in the litter and topsoil layers and in the tree leaves, in the untreated and decontaminated areas. The decreased inventories of litter materials and the litter-associated 137Cs in the decontaminated areas were observed only in the first year after decontamination. Generally, no decontamination effects were observed on the 137Cs transfer in tree leaves. The primary reason for this was the rapid shift in the main reservoir of 137Cs from litter layers to the underlying mineral soil, which differs from the observations in post-Chernobyl studies of European forest ecosystems. The results suggest that litter-removal decontamination can only be successful if it is implemented more quickly (within 1-2 years after the accident) for Japanese forest ecosystems.


Assuntos
Descontaminação , Florestas , Acidente Nuclear de Fukushima , Folhas de Planta/química , Monitoramento de Radiação , Radioisótopos de Césio/análise , Geografia , Japão , Poluentes Radioativos do Solo/análise , Fatores de Tempo , Árvores/química
4.
Sci Rep ; 9(1): 7034, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31065040

RESUMO

The Fukushima Daiichi nuclear power plant accident caused serious radiocesium (137Cs) contamination of the soil in multiple terrestrial ecosystems. Soil is a complex system where minerals, organic matter, and microorganisms interact with each other; therefore, an improved understanding of the interactions of 137Cs with these soil constituents is key to accurately assessing the environmental consequences of the accident. Soil samples were collected from field, orchard, and forest sites in July 2011, separated into three soil fractions with different mineral-organic interaction characteristics using a density fractionation method, and then analyzed for 137Cs content, mineral composition, and organic matter content. The results show that 20-71% of the 137Cs was retained in association with relatively mineral-free, particulate organic matter (POM)-dominant fractions in the orchard and forest surface soil layers. Given the physicochemical and mineralogical properties and the 137Cs extractability of the soils, 137Cs incorporation into the complex structure of POM is likely the main mechanism for 137Cs retention in the surface soil layers. Therefore, our results suggest that a significant fraction of 137Cs is not immediately immobilized by clay minerals and remains potentially mobile and bioavailable in surface layers of organic-rich soils.


Assuntos
Radioisótopos de Césio/química , Poluentes Radioativos do Solo/química , Radioisótopos de Césio/análise , Acidente Nuclear de Fukushima , Japão , Minerais/química , Solo/química , Poluentes Radioativos do Solo/análise , Difração de Raios X
5.
Chemosphere ; 205: 147-155, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29689528

RESUMO

The Fukushima Daiichi nuclear power plant accident caused serious radiocesium (137Cs) contamination in soils in a range of terrestrial ecosystems. It is well documented that the interaction of 137Cs with soil constituents, particularly clay minerals, in surface soil layers exerts strong control on the behavior of this radionuclide in the environment; however, there is little understanding of how soil aggregation-the binding of soil particles together into aggregates-can affect the mobility and bioavailability of 137Cs in soils. To explore this, soil samples were collected at seven sites under different land-use conditions in Fukushima and were separated into four aggregate-size fractions: clay-sized (<2 µm); silt-sized (2-20 µm); sand-sized (20-212 µm); and macroaggregates (212-2000 µm). The fractions were then analyzed for 137Cs content and extractability and mineral composition. In forest soils, aggregate formation was significant, and 69%-83% of 137Cs was associated with macroaggregates and sand-sized aggregates. In contrast, there was less aggregation in agricultural field soils, and approximately 80% of 137Cs was in the clay- and silt-sized fractions. Across all sites, the 137Cs extractability was higher in the sand-sized aggregate fractions than in the clay-sized fractions. Mineralogical analysis showed that, in most soils, clay minerals (vermiculite and kaolinite) were present even in the larger-sized aggregate fractions. These results demonstrate that larger-sized aggregates are a significant reservoir of potentially mobile and bioavailable 137Cs in organic-rich (forest and orchard) soils. Our study suggests that soil aggregation reduces the mobility of particle-associated 137Cs through erosion and resuspension and also enhances the bioavailability of 137Cs in soils.


Assuntos
Silicatos de Alumínio/análise , Radioisótopos de Césio/análise , Produtos Agrícolas/química , Acidente Nuclear de Fukushima , Poluentes Radioativos do Solo/análise , Solo/química , Argila , Florestas , Japão , Monitoramento de Radiação
6.
Chemosphere ; 165: 335-341, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27664523

RESUMO

The fate of radiocesium (137Cs) derived from the Fukushima nuclear accident and associated radiation risks are largely dependent on its migration and retention behavior in the litter-soil system of Japanese forest ecosystems. However, this behavior has not been well quantified. We established field lysimeters in a Japanese deciduous broad-leaved forest soon after the Fukushima nuclear accident to continuously monitor the downward transfer of 137Cs at three depths: the litter-mineral soil boundary and depths of 5 cm and 10 cm in the mineral soil. Observations were conducted at two sites within the forest from May 2011 to May 2015. Results revealed similar temporal and depth-wise variations in 137Cs downward fluxes for both sites. The 137Cs downward fluxes generally decreased year by year at all depths, indicating that 137Cs was rapidly leached from the forest-floor litter layer and was then immobilized in the upper (0-5 cm) mineral soil layer through its interaction with clay minerals. The 137Cs fluxes also showed seasonal variation, which was in accordance with variations in the throughfall and soil temperature at the sites. There was no detectable 137Cs flux at a depth of 10 cm in the mineral soil in the third and fourth years after the accident. The decreased inventory of mobile (or bioavailable) 137Cs observed during early stages after deposition indicates that the litter-soil system in the Japanese deciduous forest provides only a temporary source for 137Cs recycling in plants.


Assuntos
Radioisótopos de Césio/análise , Florestas , Acidente Nuclear de Fukushima , Monitoramento de Radiação/métodos , Poluentes Radioativos do Solo/análise , Árvores/química , Ecossistema , Japão , Minerais/química , Folhas de Planta/química , Folhas de Planta/efeitos da radiação , Estações do Ano , Solo/química , Árvores/efeitos da radiação
7.
J Environ Radioact ; 147: 1-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26005183

RESUMO

A large number of air dose rate measurements were collected by walking through a mountainous area with a small gamma-ray survey system, KURAMA-II. The data were used to map the air dose rate of a mountainous deciduous forest that received radiocesium from the Fukushima Dai-ichi Nuclear Power Plant accident. Measurements were conducted in a small stream catchment (0.6 km(2) in area) in August and September 2013, and the relationship between air dose rates and the mountainous topography was examined. Air dose rates increased with elevation, indicating that more radiocesium was deposited on ridges, and suggesting that it had remained there for 2.5 y with no significant downslope migration by soil erosion or water drainage. Orientation in relation to the dominant winds when the radioactive plume flowed to the catchment also strongly affected the air dose rates. Based on our continuous measurements using the KURAMA-II, we describe the variation in air dose rates in a mountainous forest area and suggest that it is important to consider topography when determining sampling points and resolution to assess the spatial variability of dose rates and contaminant deposition.


Assuntos
Poluentes Radioativos do Ar/análise , Radioisótopos de Césio/análise , Acidente Nuclear de Fukushima , Florestas , Geografia , Japão , Monitoramento de Radiação
8.
Sci Rep ; 4: 6853, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25358420

RESUMO

The accident at the Fukushima Daiichi nuclear power plant caused serious radiocesium ((137)Cs) contamination of forest ecosystems located in mountainous and hilly regions with steep terrain. To understand topographic effects on the redistribution and accumulation of (137)Cs on forest floor, we investigated the distribution of Fukushima-derived (137)Cs in forest-floor litter layers on a steep hillslope in a Japanese deciduous forest in August 2013 (29 months after the accident). Both leaf-litter materials and litter-associated (137)Cs were accumulated in large amounts at the bottom of the hillslope. At the bottom, a significant fraction (65%) of the (137)Cs inventory was observed to be associated with newly shed and less degraded leaf-litter materials, with estimated mean ages of 0.5-1.5 years, added via litterfall after the accident. Newly emerged leaves were contaminated with Fukushima-derived (137)Cs in May 2011 (two months after the accident) and (137)Cs concentration in them decreased with time. However, the concentrations were still two orders of magnitude higher than the pre-accident level in 2013 and 2014. These observations are the first to show that (137)Cs redistribution on a forested hillslope is strongly controlled by biologically mediated processes and continues to supply (137)Cs to the bottom via litterfall at a reduced rate.


Assuntos
Radioisótopos de Césio , Poluição Ambiental , Florestas , Acidente Nuclear de Fukushima , Ecossistema , Monitoramento Ambiental , Geografia , Humanos , Japão , Folhas de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...