Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 11765, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474783

RESUMO

NMN is the direct precursor of nicotinamide adenine dinucleotide (NAD+) and is considered as a key factor for increasing NAD+ levels and mitochondrial activity in cells. In this study, based on transcriptome analysis, we showed that NMN alleviates the poly(I:C)-induced inflammatory response in cultures of two types of human primary cells, human pulmonary microvascular endothelial cells (HPMECs) and human coronary artery endothelial cells (HCAECs). Major inflammatory mediators, including IL6 and PARP family members, were grouped into coexpressed gene modules and significantly downregulated under NMN exposure in poly(I:C)-activated conditions in both cell types. The Bayesian network analysis of module hub genes predicted common genes, including eukaryotic translation initiation factor 4B (EIF4B), and distinct genes, such as platelet-derived growth factor binding molecules, in HCAECs, which potentially regulate the identified inflammation modules. These results suggest a robust regulatory mechanism by which NMN alleviates inflammatory pathway activation, which may open up the possibility of a new role for NMN replenishment in the treatment of chronic or acute inflammation.


Assuntos
NAD , Mononucleotídeo de Nicotinamida , Humanos , Mononucleotídeo de Nicotinamida/farmacologia , NAD/metabolismo , Células Endoteliais/metabolismo , Teorema de Bayes , Cultura Primária de Células , Inflamação/genética
2.
Alzheimers Res Ther ; 13(1): 92, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33941241

RESUMO

BACKGROUND: Identifying novel therapeutic targets is crucial for the successful development of drugs. However, the cost to experimentally identify therapeutic targets is huge and only approximately 400 genes are targets for FDA-approved drugs. As a result, it is inevitable to develop powerful computational tools that can identify potential novel therapeutic targets. Fortunately, the human protein-protein interaction network (PIN) could be a useful resource to achieve this objective. METHODS: In this study, we developed a deep learning-based computational framework that extracts low-dimensional representations of high-dimensional PIN data. Our computational framework uses latent features and state-of-the-art machine learning techniques to infer potential drug target genes. RESULTS: We applied our computational framework to prioritize novel putative target genes for Alzheimer's disease and successfully identified key genes that may serve as novel therapeutic targets (e.g., DLG4, EGFR, RAC1, SYK, PTK2B, SOCS1). Furthermore, based on these putative targets, we could infer repositionable candidate-compounds for the disease (e.g., tamoxifen, bosutinib, and dasatinib). CONCLUSIONS: Our deep learning-based computational framework could be a powerful tool to efficiently prioritize new therapeutic targets and enhance the drug repositioning strategy.


Assuntos
Doença de Alzheimer , Preparações Farmacêuticas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Inteligência Artificial , Reposicionamento de Medicamentos , Humanos , Aprendizado de Máquina
3.
PLoS Comput Biol ; 11(6): e1004210, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26046580

RESUMO

Oxidative stress mediated clustering of membrane protein band 3 plays an essential role in the clearance of damaged and aged red blood cells (RBCs) from the circulation. While a number of previous experimental studies have observed changes in band 3 distribution after oxidative treatment, the details of how these clusters are formed and how their properties change under different conditions have remained poorly understood. To address these issues, a framework that enables the simultaneous monitoring of the temporal and spatial changes following oxidation is needed. In this study, we established a novel simulation strategy that incorporates deterministic and stochastic reactions with particle reaction-diffusion processes, to model band 3 cluster formation at single molecule resolution. By integrating a kinetic model of RBC antioxidant metabolism with a model of band 3 diffusion, we developed a model that reproduces the time-dependent changes of glutathione and clustered band 3 levels, as well as band 3 distribution during oxidative treatment, observed in prior studies. We predicted that cluster formation is largely dependent on fast reverse reaction rates, strong affinity between clustering molecules, and irreversible hemichrome binding. We further predicted that under repeated oxidative perturbations, clusters tended to progressively grow and shift towards an irreversible state. Application of our model to simulate oxidation in RBCs with cytoskeletal deficiency also suggested that oxidation leads to more enhanced clustering compared to healthy RBCs. Taken together, our model enables the prediction of band 3 spatio-temporal profiles under various situations, thus providing valuable insights to potentially aid understanding mechanisms for removing senescent and premature RBCs.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito/química , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Membrana Eritrocítica/química , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Biologia Computacional , Eritrócitos/química , Humanos , Modelos Biológicos , Oxirredução
4.
PLoS One ; 8(8): e71060, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24205395

RESUMO

Although intraerythrocytic ATP and 2,3-bisphophoglycerate (2,3-BPG) are known as direct indicators of the viability of preserved red blood cells and the efficiency of post-transfusion oxygen delivery, no current blood storage method in practical use has succeeded in maintaining both these metabolites at high levels for long periods. In this study, we constructed a mathematical kinetic model of comprehensive metabolism in red blood cells stored in a recently developed blood storage solution containing adenine and guanosine, which can maintain both ATP and 2,3-BPG. The predicted dynamics of metabolic intermediates in glycolysis, the pentose phosphate pathway, and purine salvage pathway were consistent with time-series metabolome data measured with capillary electrophoresis time-of-flight mass spectrometry over 5 weeks of storage. From the analysis of the simulation model, the metabolic roles and fates of the 2 major additives were illustrated: (1) adenine could enlarge the adenylate pool, which maintains constant ATP levels throughout the storage period and leads to production of metabolic waste, including hypoxanthine; (2) adenine also induces the consumption of ribose phosphates, which results in 2,3-BPG reduction, while (3) guanosine is converted to ribose phosphates, which can boost the activity of upper glycolysis and result in the efficient production of ATP and 2,3-BPG. This is the first attempt to clarify the underlying metabolic mechanism for maintaining levels of both ATP and 2,3-BPG in stored red blood cells with in silico analysis, as well as to analyze the trade-off and the interlock phenomena between the benefits and possible side effects of the storage-solution additives.


Assuntos
Adenina/metabolismo , Preservação de Sangue/métodos , Eritrócitos/metabolismo , Guanosina/metabolismo , Metaboloma , 2,3-Difosfoglicerato/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Simulação por Computador , Glicólise , Humanos , Modelos Biológicos , Via de Pentose Fosfato
5.
Adv Hematol ; 2011: 398945, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21977034

RESUMO

It is well known that G6PD-deficient individuals are highly susceptible to oxidative stress. However, the differences in the degree of metabolic alterations among patients during an oxidative crisis have not been extensively studied. In this study, we applied mathematical modeling to assess the metabolic changes in erythrocytes of various G6PD-deficient patients during hydrogen peroxide- (H(2)O(2)-) induced perturbation and predict the kinetic properties that elicit redox imbalance after exposure to an oxidative agent. Simulation results showed a discrepancy in the ability to restore regular metabolite levels and redox homeostasis among patients. Two trends were observed in the response of redox status (GSH/GSSG) to oxidative stress, a mild decrease associated with slow recovery and a drastic decline associated with rapid recovery. The former was concluded to apply to patients with severe clinical symptoms. Low V(max) and high K(mG6P) of G6PD were shown to be kinetic properties that enhance consequent redox imbalance.

6.
J Biomed Biotechnol ; 2010: 642420, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20625505

RESUMO

The human red blood cell (RBC) has long been used for modeling of complex biological networks, for elucidation of a wide variety of dynamic phenomena, and for understanding the fundamental topology of metabolic pathways. Here, we introduce our recent work on an RBC metabolic model using the E-Cell Simulation Environment. The model is sufficiently detailed to predict the temporal hypoxic response of each metabolite and, at the same time, successfully integrates modulation of metabolism and of the oxygen transporting capacity of hemoglobin. The model includes the mechanisms of RBC maintenance as a single cell system and the functioning of RBCs as components of a higher order system. Modeling of RBC metabolism is now approaching a fully mature stage of realistic predictions at the molecular level and will be useful for predicting conditions in biotechnological applications such as long-term cold storage of RBCs.


Assuntos
Simulação por Computador , Eritrócitos/metabolismo , Modelos Biológicos , Interface Usuário-Computador , Hipóxia Celular , Eritrócitos/citologia , Glicólise , Humanos
7.
J Biotechnol ; 144(3): 212-23, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19695295

RESUMO

There is currently no effective method for preventing ATP and 2,3-bisphosphoglycerate (2,3-BPG) depletion during long-term erythrocyte storage in the cold, although these metabolites are strongly associated with cell viability and oxygen delivery after transfusion. Metabolite reduction is caused by whole metabolic networks in the cell, which are regulated by various physical or chemical factors. Mathematical modeling is a powerful tool for integrating such complex and dynamic systems. Here, we developed a mathematical model to predict metabolism in erythrocytes preserved with a mannitol-adenine-phosphate solution (MAP) at 4 degrees C, by modifying a published model of large-scale erythrocyte metabolism. Our model successfully reproduced the reported decreases in ATP and 2,3-BPG during storage. Analysis of our model identified several enzymatic reactions and factors related to ATP and 2,3-BPG depletions, which may serve as possible targets for improving blood storage methods. We also performed metabolome analysis of laboratory-made MAP-stored erythrocytes using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS), which provided a comprehensive view of the metabolism dynamics. Alterations in the metabolic intermediate concentrations after long storage were qualitatively predicted by the model. Finally, through further systematic analysis, we also discuss the usability of our model.


Assuntos
Preservação de Sangue/métodos , Biologia Computacional , Eritrócitos/metabolismo , Metaboloma , Modelos Biológicos , 2,3-Difosfoglicerato/metabolismo , Trifosfato de Adenosina/metabolismo , Temperatura Baixa , Simulação por Computador , Eletroforese Capilar , Glicólise , Humanos , Espectrometria de Massas , Soluções , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA