Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 302: 122338, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37820517

RESUMO

Idiopathic Pulmonary Fibrosis (IPF) is a progressively debilitating lung condition characterized by oxidative stress, cell phenotype shifts, and excessive extracellular matrix (ECM) deposition. Recent studies have shown promising results using decellularized ECM-derived hydrogels produced through pepsin digestion in various lung injury models and even a human clinical trial for myocardial infarction. This study aimed to characterize the composition of ECM-derived hydrogels, assess their potential to prevent fibrosis in bleomycin-induced IPF models, and unravel their underlying molecular mechanisms of action. Porcine lungs were decellularized and pepsin-digested for 48 h. The hydrogel production process, including visualization of protein molecular weight distribution and hydrogel gelation, was characterized. Peptidomics analysis of ECM-derived hydrogel contained peptides from 224 proteins. Probable bioactive and cell-penetrating peptides, including collagen IV, laminin beta 2, and actin alpha 1, were identified. ECM-derived hydrogel treatment was administered as an early intervention to prevent fibrosis advancement in rat models of bleomycin-induced pulmonary fibrosis. ECM-derived hydrogel concentrations of 1 mg/mL and 2 mg/mL showed subtle but noticeable effects on reducing lung inflammation, oxidative damage, and protein markers related to fibrosis (e.g., alpha-smooth muscle actin, collagen I). Moreover, distinct changes were observed in macroscopic appearance, alveolar structure, collagen deposition, and protein expression between lungs that received ECM-derived hydrogel and control fibrotic lungs. Proteomic analyses revealed significant protein and gene expression changes related to cellular processes, pathways, and components involved in tissue remodeling, inflammation, and cytoskeleton regulation. RNA sequencing highlighted differentially expressed genes associated with various cellular processes, such as tissue remodeling, hormone secretion, cell chemotaxis, and cytoskeleton engagement. This study suggests that ECM-derived hydrogel treatment influence pathways associated with tissue repair, inflammation regulation, cytoskeleton reorganization, and cellular response to injury, potentially offering therapeutic benefits in preventing or mitigating lung fibrosis.


Assuntos
Hidrogéis , Fibrose Pulmonar Idiopática , Suínos , Ratos , Humanos , Animais , Hidrogéis/química , Actinas/metabolismo , Pepsina A/metabolismo , Proteômica , Matriz Extracelular/metabolismo , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Fibrose , Colágeno/metabolismo , Inflamação/patologia , Bleomicina
2.
Biochim Biophys Acta Proteins Proteom ; 1869(7): 140643, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33722654

RESUMO

Using approaches of transcriptomics and proteomics we have shown that the phenotype of Bothrops jararaca venom undergoes a significant rearrangement upon neonate to adult transition. Most regulatory processes in biology are intrinsically related to modifications of protein structure, function, and abundance. However, it is unclear to which extent intrinsic proteolysis affects toxins and snake venom phenotypes upon ontogenesis. Here we assessed the natural N-terminome of Bothrops jararaca newborn and adult venoms and explored the degree of N-terminal protein truncation in ontogenetic-based proteome variation. To this end we applied the Terminal Amine Isotopic Labeling of Substrates (TAILS) technology to characterize venom collected in the presence of proteinase inhibitors. We identified natural N-terminal sequences in the newborn (71) and adult (84) venoms, from which only 37 were common to both. However, truncated toxins were found in higher number in the newborn (212) than in the adult (140) venom. Moreover, sequences N-terminally blocked by pyroglutamic acid were identified in the newborn (55) and adult (49) venoms. Most toxin classes identified by their natural N-terminal sequences showed a similar number of unique peptides in the newborn and adult venoms, however, those of serine proteinases and C-type lectins were more abundant in the adult venom. Truncated sequences from at least ten toxin classes were detected, however the catalytic and cysteine-rich domains of metalloproteinases were the most prone to proteolysis, mainly in the newborn venom. Our results underscore the pervasiveness of truncations in most toxin classes and highlight variable post-translational events in newborn and adult venoms.


Assuntos
Venenos de Crotalídeos/química , Fatores Etários , Animais , Animais Recém-Nascidos , Bothrops/metabolismo , Cromatografia Líquida/métodos , Venenos de Crotalídeos/metabolismo , Perfilação da Expressão Gênica/métodos , Proteólise , Proteoma/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Toxinas Biológicas , Transcriptoma/genética
3.
Sci Rep ; 11(1): 1995, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479267

RESUMO

The joint disease called pararamosis is an occupational disease caused by accidental contact with bristles of the caterpillar Premolis semirufa. The chronic inflammatory process narrows the joint space and causes alterations in bone structure and cartilage degeneration, leading to joint stiffness. Aiming to determine the bristle components that could be responsible for this peculiar envenomation, in this work we have examined the toxin composition of the caterpillar bristles extract and compared it with the differentially expressed genes (DEGs) in synovial biopsies of patients affected with rheumatoid arthritis (RA) and osteoarthritis (OA). Among the proteins identified, 129 presented an average of 63% homology with human proteins and shared important conserved domains. Among the human homologous proteins, we identified seven DEGs upregulated in synovial biopsies from RA or OA patients using meta-analysis. This approach allowed us to suggest possible toxins from the pararama bristles that could be responsible for starting the joint disease observed in pararamosis. Moreover, the study of pararamosis, in turn, may lead to the discovery of specific pharmacological targets related to the early stages of articular diseases.


Assuntos
Artrite Reumatoide/epidemiologia , Artropatias/epidemiologia , Lepidópteros/patogenicidade , Osteoartrite/epidemiologia , Toxinas Biológicas/toxicidade , Animais , Artrite Reumatoide/induzido quimicamente , Humanos , Inflamação/induzido quimicamente , Inflamação/epidemiologia , Artropatias/induzido quimicamente , Artropatias/patologia , Lepidópteros/química , Doenças Profissionais/induzido quimicamente , Doenças Profissionais/epidemiologia , Osteoartrite/induzido quimicamente , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/patologia , Toxinas Biológicas/isolamento & purificação , Peçonhas/efeitos adversos , Peçonhas/química
4.
J Proteome Res ; 20(2): 1341-1358, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33404253

RESUMO

Bothrops alcatraz, a species endemic to Alcatrazes Islands, is regarded as critically endangered due to its small area of occurrence and the declining quality of its habitat. We recently reported the identification of N-glycans attached to toxins of Bothrops species, showing similar compositions in venoms of the B. jararaca complex (B. jararaca, B. insularis, and B. alcatraz). Here, we characterized B. alcatraz venom using electrophoretic, proteomic, and glycoproteomic approaches. Electrophoresis showed that B. alcatraz venom differs from B. jararaca and B. insularis; however, N-glycan removal revealed similarities between them, indicating that the occupation of N-glycosylation sites contributes to interspecies variability in the B. jararaca complex. Metalloproteinase was the major toxin class identified in the B. alcatraz venom proteome followed by serine proteinase and C-type lectin, and overall, the adult B. alcatraz venom resembles that of B. jararaca juvenile specimens. The comparative glycoproteomic analysis of B. alcatraz venom with B. jararaca and B. insularis indicated that there may be differences in the utilization of N-glycosylation motifs among their different toxin classes. Furthermore, we prospected for the first time the N-terminome of a snake venom using the terminal amine isotopic labeling of substrates (TAILS) approach and report the presence of ∼30% of N-termini corresponding to truncated toxin forms and ∼37% N-terminal sequences blocked by pyroglutamic acid in B. alcatraz venom. These findings underscore a low correlation between venom gland transcriptomes and proteomes and support the view that post-translational processes play a major role in shaping venom phenotypes.


Assuntos
Bothrops , Venenos de Crotalídeos , Aminas , Animais , Proteoma , Proteômica
5.
Sci Signal ; 13(635)2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518143

RESUMO

Zika virus (ZIKV) infection during pregnancy can cause a set of severe abnormalities in the fetus known as congenital Zika syndrome (CZS). Experiments with animal models and in vitro systems have substantially contributed to our understanding of the pathophysiology of ZIKV infection. Here, to investigate the molecular basis of CZS in humans, we used a systems biology approach to integrate transcriptomic, proteomic, and genomic data from the postmortem brains of neonates with CZS. We observed that collagens were greatly reduced in expression in CZS brains at both the RNA and protein levels and that neonates with CZS had several single-nucleotide polymorphisms in collagen-encoding genes that are associated with osteogenesis imperfecta and arthrogryposis. These findings were validated by immunohistochemistry and comparative analysis of collagen abundance in ZIKV-infected and uninfected samples. In addition, we showed a ZIKV-dependent increase in the expression of cell adhesion factors that are essential for neurite outgrowth and axon guidance, findings that are consistent with the neuronal migration defects observed in CZS. Together, these findings provide insights into the underlying molecular alterations in the ZIKV-infected brain and reveal host genes associated with CZS susceptibility.


Assuntos
Encéfalo , Colágeno , Matriz Extracelular , Polimorfismo de Nucleotídeo Único , Infecção por Zika virus , Zika virus , Encéfalo/metabolismo , Encéfalo/patologia , Colágeno/genética , Colágeno/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Feminino , Humanos , Recém-Nascido , Masculino , Síndrome , Infecção por Zika virus/congênito , Infecção por Zika virus/genética , Infecção por Zika virus/metabolismo , Infecção por Zika virus/patologia
6.
J Proteomics ; 198: 163-176, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30553073

RESUMO

Manifestations of local tissue damage, such as hemorrhage and myonecrosis, are among the most dramatic effects of envenomation by viperid snakes. Snake venom metalloproteinases (SVMPs) of the P-III class are main players of the hemorrhagic effect due to their activities in promoting blood vessel disruption. Hemorrhagic Factor 3 (HF3), a P-III class SVMP from Bothrops jararaca, shows a minimum hemorrhagic dose of 240 fmol on rabbit skin. The aim of this study was to assess the effects of a sub-cytotoxic dose of HF3 (50 nM) on the proteomic profile of C2C12 differentiated cells (myotubes) in culture, and on the peptidomic profile of the culture supernatant. Quantitative proteomic analysis using stable-isotope dimethyl labeling showed differential abundance of various proteins including enzymes involved in oxidative stress and inflammation responses. Identification of peptides in the supernatant of HF3-treated myotubes revealed proteolysis and pointed out potential new substrates of HF3, including glyceraldehyde-3-phosphate dehydrogenase, and some damage-associated molecular patterns (DAMPs). These experiments demonstrate the subtle effects of HF3 on muscle cells and illustrate for the first time the early proteolytic events triggered by HF3 on myotubes. Moreover, they may contribute to future studies aimed at explaining the inflammation process, hemorrhage and myonecrosis caused by SVMPs. SIGNIFICANCE: One of the main features of viperid snake envenomation is myotoxicity at the bite site, which, in turn is often associated with edema, blistering and hemorrhage, composing a complex pattern of local tissue damage. In this scenario, besides muscle cells, other types of cells, components of the extracellular matrix and blood vessels may also be affected, resulting in an outcome of deficient muscle regeneration. The main venom components participating in this pathology are metalloproteinases and phospholipases A2. Muscle necrosis induced by metalloproteinases is considered as an indirect effect related to ischemia, due to hemorrhage resulted from damage to the microvasculature. The pathogenesis of local effects induced by Bothrops venoms or isolated toxins has been studied by traditional methodologies. More recently, proteomic and peptidomic approaches have been used to study venom-induced pathogenesis. Here, in order to investigate the role of metalloproteinase activity in local tissue damage, we asked whether the hemorrhagic metalloproteinase HF3, at sub-cytotoxic levels, could alter the proteome of C2C12 myotubes in culture, thereby providing an insight into the mechanisms for the development of myonecrosis. Our results from mass spectrometric analyses showed subtle, early changes in the cells, including differential abundance of some proteins and proteolysis in the culture supernatant. The data illustrate the potential ability of metalloproteinases to trigger early systemic responses progressing from local cells and up to tissues.


Assuntos
Venenos de Crotalídeos/farmacologia , Metaloproteases/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Proteômica , Animais , Bothrops , Linhagem Celular , Venenos de Crotalídeos/química , Metaloproteases/química , Camundongos , Fibras Musculares Esqueléticas/patologia
7.
PLoS One ; 13(8): e0200628, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30067761

RESUMO

Phoneutria nigriventer is one of the largest existing true spiders and one of the few considered medically relevant. Its venom contains several neurotoxic peptides that act on different ion channels and chemical receptors of vertebrates and invertebrates. Some of these venom toxins have been shown as promising models for pharmaceutical or biotechnological use. However, the large diversity and the predominance of low molecular weight toxins in this venom have hampered the identification and deep investigation of the less abundant toxins and the proteins with high molecular weight. Here, we combined conventional and next-generation cDNA sequencing with Multidimensional Protein Identification Technology (MudPIT), to obtain an in-depth panorama of the composition of P. nigriventer spider venom. The results from these three approaches showed that cysteine-rich peptide toxins are the most abundant components in this venom and most of them contain the Inhibitor Cysteine Knot (ICK) structural motif. Ninety-eight sequences corresponding to cysteine-rich peptide toxins were identified by the three methodologies and many of them were considered as putative novel toxins, due to the low similarity to previously described toxins. Furthermore, using next-generation sequencing we identified families of several other classes of toxins, including CAPs (Cysteine Rich Secretory Protein-CRiSP, antigen 5 and Pathogenesis-Related 1-PR-1), serine proteinases, TCTPs (translationally controlled tumor proteins), proteinase inhibitors, metalloproteinases and hyaluronidases, which have been poorly described for this venom. This study provides an overview of the molecular diversity of P. nigriventer venom, revealing several novel components and providing a better basis to understand its toxicity and pharmacological activities.


Assuntos
Proteômica , Venenos de Aranha/metabolismo , Aranhas/metabolismo , Transcriptoma , Sequência de Aminoácidos , Animais , Biomarcadores Tumorais/química , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , DNA Complementar/química , DNA Complementar/genética , DNA Complementar/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Peptídeos/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Aranhas/genética , Toxinas Biológicas/genética , Toxinas Biológicas/metabolismo , Proteína Tumoral 1 Controlada por Tradução
8.
J Proteomics ; 159: 32-46, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28274896

RESUMO

Venom variability is commonly reported for venomous snakes including Bothrops atrox. Here, we compared the composition of venoms from B. atrox snakes collected at Amazonian conserved habitats (terra-firme upland forest and várzea) and human modified areas (pasture and degraded areas). Venom samples were submitted to shotgun proteomic analysis as a whole or compared after fractionation by reversed-phase chromatography. Whole venom proteomes revealed a similar composition among the venoms with predominance of SVMPs, CTLs, and SVSPs and intermediate amounts of PLA2s and LAAOs. However, when distribution of particular isoforms was analyzed by either method, the venom from várzea snakes showed a decrease in hemorrhagic SVMPs and an increase in SVSPs, and procoagulant SVMPs and PLA2s. These differences were validated by experimental approaches including both enzymatic and in vivo assays, and indicated restrictions in respect to antivenom efficacy to variable components. Thus, proteomic analysis at the isoform level combined to in silico prediction of functional properties may indicate venom biological activity. These results also suggest that the prevalence of functionally distinct isoforms contributes to the variability of the venoms and could reflect the adaptation of B. atrox to distinct prey communities in different Amazon habitats. BIOLOGICAL SIGNIFICANCE: In this report, we compared isoforms present in venoms from snakes collected at different Amazonian habitats. By means of a species venom gland transcriptome and the in silico functional prediction of each isoform, we were able to predict the principal venom activities in vitro and in animal models. We also showed remarkable differences in the venom pools from snakes collected at the floodplain (várzea habitat) compared to other habitats. Not only was this venom less hemorrhagic and more procoagulant, when compared to the venom pools from the other three habitats studied, but also this enhanced procoagulant activity was not efficiently neutralized by Bothrops antivenom. Thus, using a functional proteomic approach, we highlighted intraspecific differences in B. atrox venom that could impact both in the ecology of snakes but also in the treatment of snake bite patients in the region.


Assuntos
Bothrops/metabolismo , Venenos de Crotalídeos/biossíntese , Ecossistema , Glândulas Exócrinas/metabolismo , Proteômica , Animais , Bothrops/genética , Brasil , Venenos de Crotalídeos/genética , Transcriptoma/fisiologia
9.
J Proteomics ; 151: 232-242, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-27436114

RESUMO

Acanthoscurria gomesiana is a Brazilian spider from the Theraphosidae family inhabiting regions of Southeastern Brazil. Potent antimicrobial peptides as gomesin and acanthoscurrin have been discovered from the spider hemolymph in previous works. Spider venoms are also recognized as sources of biologically active peptides, however the venom peptidome of A. gomesiana remained unexplored to date. In this work, a MS-based workflow was applied to the investigation of the spider venom peptidome. Data-independent and data-dependent LC-MS/MS acquisitions of intact peptides and of peptides submitted to multiple enzyme digestions, followed by automated chromatographic alignment, de novo analysis, database and homology searches with manual validations showed that the venom is composed by <165 features, with masses ranging from 0.4-15.8kDa. From digestions, 135 peptides were identified from 17 proteins, including three new mature peptides: U1-TRTX-Agm1a, U1-TRTX-Agm2a and U1-TRTX-Agm3a, containing 3, 4 and 3 disulfide bonds, respectively. The toxins U1-TRTX-Agm1a differed by only one amino acid from U1-TRTX-Ap1a from A. paulensis and U1-TRTX-Agm2a was derived from the genicutoxin-D1 precursor from A. geniculata. These toxins have potential applications as antimicrobial agents, as the peptide fraction of A. gomesiana showed activity against Escherichia coli, Enterobacter cloacae and Candida albicans strains. MS data are available via ProteomeXchange Consortium with identifier PXD003884. BIOLOGICAL SIGNIFICANCE: Biological fluids of the Acanthoscurria gomesiana spider are sources of active molecules, as is the case of antimicrobial peptides and acylpolyamines found in the hemolymphs. The venom is also a potential source of toxins with pharmacological and biotechnological applications. However, to our knowledge no A. gomesiana venom toxin structure has been determined to date. Using a combination of high resolution mass spectrometry, transcriptomics and bioinformatics, we employed a workflow to fully sequence, determine the number of disulfide bonds of mature peptides and we found new potential antimicrobial peptides. This workflow is suitable for complete peptide toxin sequencing when handling limited amount of venom samples and can accelerate the discovery of peptides with potential biotechnological applications.


Assuntos
Anti-Infecciosos/isolamento & purificação , Peptídeos/análise , Venenos de Aranha/química , Aranhas/patogenicidade , Animais , Anti-Infecciosos/farmacologia , Brasil , Cromatografia Líquida , Dissulfetos/análise , Dissulfetos/farmacologia , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/farmacologia , Peptídeos/farmacologia , Espectrometria de Massas em Tandem , Fluxo de Trabalho
10.
PLoS One ; 8(10): e77388, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24155949

RESUMO

Rickettsia rickettsii is an obligate intracellular tick-borne bacterium that causes Rocky Mountain Spotted Fever (RMSF), the most lethal spotted fever rickettsiosis. When an infected starving tick begins blood feeding from a vertebrate host, R. rickettsii is exposed to a temperature elevation and to components in the blood meal. These two environmental stimuli have been previously associated with the reactivation of rickettsial virulence in ticks, but the factors responsible for this phenotype conversion have not been completely elucidated. Using customized oligonucleotide microarrays and high-throughput microfluidic qRT-PCR, we analyzed the effects of a 10°C temperature elevation and of a blood meal on the transcriptional profile of R. rickettsii infecting the tick Amblyomma aureolatum. This is the first study of the transcriptome of a bacterium in the genus Rickettsia infecting a natural tick vector. Although both stimuli significantly increased bacterial load, blood feeding had a greater effect, modulating five-fold more genes than the temperature upshift. Certain components of the Type IV Secretion System (T4SS) were up-regulated by blood feeding. This suggests that this important bacterial transport system may be utilized to secrete effectors during the tick vector's blood meal. Blood feeding also up-regulated the expression of antioxidant enzymes, which might correspond to an attempt by R. rickettsii to protect itself against the deleterious effects of free radicals produced by fed ticks. The modulated genes identified in this study, including those encoding hypothetical proteins, require further functional analysis and may have potential as future targets for vaccine development.


Assuntos
Comportamento Alimentar/fisiologia , Perfilação da Expressão Gênica , Insetos Vetores/microbiologia , Rickettsia rickettsii/genética , Rickettsia rickettsii/fisiologia , Temperatura , Carrapatos/microbiologia , Animais , Sistemas de Secreção Bacterianos/genética , Simulação por Computador , Feminino , Genes Bacterianos/genética , Cobaias , Microfluídica , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Infecções por Rickettsia/genética , Infecções por Rickettsia/microbiologia
11.
Parasitol Res ; 108(1): 123-35, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20852890

RESUMO

Schistosomiasis affects more than 200 million people worldwide; another 600 million are at risk of infection. The schistosomulum stage is believed to be the target of protective immunity in the attenuated cercaria vaccine model. In an attempt to identify genes up-regulated in the schistosomulum stage in relation to cercaria, we explored the Schistosoma mansoni transcriptome by looking at the relative frequency of reads in EST libraries from both stages. The 400 genes potentially up-regulated in schistosomula were analyzed as to their Gene Ontology categorization, and we have focused on those encoding-predicted proteins with no similarity to proteins of other organisms, assuming they could be parasite-specific proteins important for survival in the host. Up-regulation in schistosomulum relative to cercaria was validated with real-time reverse transcription polymerase chain reaction (RT-PCR) for five out of nine selected genes (56%). We tested their protective potential in mice through immunization with DNA vaccines followed by a parasite challenge. Worm burden reductions of 16-17% were observed for one of them, indicating its protective potential. Our results demonstrate the value and caveats of using stage-associated frequency of ESTs as an indication of differential expression coupled to DNA vaccine screening in the identification of novel proteins to be further investigated as potential vaccine candidates.


Assuntos
Perfilação da Expressão Gênica , Schistosoma mansoni/crescimento & desenvolvimento , Schistosoma mansoni/genética , Animais , Antígenos de Helmintos/biossíntese , DNA de Helmintos/química , DNA de Helmintos/genética , Etiquetas de Sequências Expressas , Proteínas de Helminto/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esquistossomose mansoni/prevenção & controle , Análise de Sequência de DNA , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologia
12.
BMC Genomics ; 11: 238, 2010 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20388224

RESUMO

BACKGROUND: Citrus canker is a disease that has severe economic impact on the citrus industry worldwide. There are three types of canker, called A, B, and C. The three types have different phenotypes and affect different citrus species. The causative agent for type A is Xanthomonas citri subsp. citri, whose genome sequence was made available in 2002. Xanthomonas fuscans subsp. aurantifolii strain B causes canker B and Xanthomonas fuscans subsp. aurantifolii strain C causes canker C. RESULTS: We have sequenced the genomes of strains B and C to draft status. We have compared their genomic content to X. citri subsp. citri and to other Xanthomonas genomes, with special emphasis on type III secreted effector repertoires. In addition to pthA, already known to be present in all three citrus canker strains, two additional effector genes, xopE3 and xopAI, are also present in all three strains and are both located on the same putative genomic island. These two effector genes, along with one other effector-like gene in the same region, are thus good candidates for being pathogenicity factors on citrus. Numerous gene content differences also exist between the three cankers strains, which can be correlated with their different virulence and host range. Particular attention was placed on the analysis of genes involved in biofilm formation and quorum sensing, type IV secretion, flagellum synthesis and motility, lipopolysacharide synthesis, and on the gene xacPNP, which codes for a natriuretic protein. CONCLUSION: We have uncovered numerous commonalities and differences in gene content between the genomes of the pathogenic agents causing citrus canker A, B, and C and other Xanthomonas genomes. Molecular genetics can now be employed to determine the role of these genes in plant-microbe interactions. The gained knowledge will be instrumental for improving citrus canker control.


Assuntos
Citrus/microbiologia , Genoma Bacteriano/genética , Genômica , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Xanthomonas/genética , Agrobacterium tumefaciens/genética , Biofilmes , Flagelos/genética , Genes Bacterianos/genética , Família Multigênica , Antígenos O/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Percepção de Quorum/genética , Ralstonia solanacearum/genética , Especificidade da Espécie , Xanthomonas/citologia , Xanthomonas/metabolismo , Xanthomonas/fisiologia
13.
BMC Genomics ; 10: 120, 2009 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-19302712

RESUMO

BACKGROUND: Sucrose content is a highly desirable trait in sugarcane as the worldwide demand for cost-effective biofuels surges. Sugarcane cultivars differ in their capacity to accumulate sucrose and breeding programs routinely perform crosses to identify genotypes able to produce more sucrose. Sucrose content in the mature internodes reach around 20% of the culms dry weight. Genotypes in the populations reflect their genetic program and may display contrasting growth, development, and physiology, all of which affect carbohydrate metabolism. Few studies have profiled gene expression related to sugarcane's sugar content. The identification of signal transduction components and transcription factors that might regulate sugar accumulation is highly desirable if we are to improve this characteristic of sugarcane plants. RESULTS: We have evaluated thirty genotypes that have different Brix (sugar) levels and identified genes differentially expressed in internodes using cDNA microarrays. These genes were compared to existing gene expression data for sugarcane plants subjected to diverse stress and hormone treatments. The comparisons revealed a strong overlap between the drought and sucrose-content datasets and a limited overlap with ABA signaling. Genes associated with sucrose content were extensively validated by qRT-PCR, which highlighted several protein kinases and transcription factors that are likely to be regulators of sucrose accumulation. The data also indicate that aquaporins, as well as lignin biosynthesis and cell wall metabolism genes, are strongly related to sucrose accumulation. Moreover, sucrose-associated genes were shown to be directly responsive to short term sucrose stimuli, confirming their role in sugar-related pathways. CONCLUSION: Gene expression analysis of sugarcane populations contrasting for sucrose content indicated a possible overlap with drought and cell wall metabolism processes and suggested signaling and transcriptional regulators to be used as molecular markers in breeding programs. Transgenic research is necessary to further clarify the role of the genes and define targets useful for sugarcane improvement programs based on transgenic plants.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Saccharum/química , Saccharum/genética , Sacarose/análise , Agricultura , Perfilação da Expressão Gênica , Genótipo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Fatores de Transcrição/genética
14.
Plant Physiol ; 149(1): 171-80, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18987217

RESUMO

Transcription factors (TFs) are major players in gene regulatory networks and interactions between TFs and their target genes furnish spatiotemporal patterns of gene expression. Establishing the architecture of regulatory networks requires gathering information on TFs, their targets in the genome, and the corresponding binding sites. We have developed GRASSIUS (Grass Regulatory Information Services) as a knowledge-based Web resource that integrates information on TFs and gene promoters across the grasses. In its initial implementation, GRASSIUS consists of two separate, yet linked, databases. GrassTFDB holds information on TFs from maize (Zea mays), sorghum (Sorghum bicolor), sugarcane (Saccharum spp.), and rice (Oryza sativa). TFs are classified into families and phylogenetic relationships begin to uncover orthologous relationships among the participating species. This database also provides a centralized clearinghouse for TF synonyms in the grasses. GrassTFDB is linked to the grass TFome collection, which provides clones in recombination-based vectors corresponding to full-length open reading frames for a growing number of grass TFs. GrassPROMDB contains promoter and cis-regulatory element information for those grass species and genes for which enough data are available. The integration of GrassTFDB and GrassPROMDB will be accomplished through GrassRegNet as a first step in representing the architecture of grass regulatory networks. GRASSIUS can be accessed from www.grassius.org.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Bases de Dados Genéticas , Genômica , Poaceae/genética , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Filogenia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Interface Usuário-Computador
15.
BMC Genomics ; 8: 71, 2007 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-17355627

RESUMO

BACKGROUND: Sugarcane is an increasingly economically and environmentally important C4 grass, used for the production of sugar and bioethanol, a low-carbon emission fuel. Sugarcane originated from crosses of Saccharum species and is noted for its unique capacity to accumulate high amounts of sucrose in its stems. Environmental stresses limit enormously sugarcane productivity worldwide. To investigate transcriptome changes in response to environmental inputs that alter yield we used cDNA microarrays to profile expression of 1,545 genes in plants submitted to drought, phosphate starvation, herbivory and N2-fixing endophytic bacteria. We also investigated the response to phytohormones (abscisic acid and methyl jasmonate). The arrayed elements correspond mostly to genes involved in signal transduction, hormone biosynthesis, transcription factors, novel genes and genes corresponding to unknown proteins. RESULTS: Adopting an outliers searching method 179 genes with strikingly different expression levels were identified as differentially expressed in at least one of the treatments analysed. Self Organizing Maps were used to cluster the expression profiles of 695 genes that showed a highly correlated expression pattern among replicates. The expression data for 22 genes was evaluated for 36 experimental data points by quantitative RT-PCR indicating a validation rate of 80.5% using three biological experimental replicates. The SUCAST Database was created that provides public access to the data described in this work, linked to tissue expression profiling and the SUCAST gene category and sequence analysis. The SUCAST database also includes a categorization of the sugarcane kinome based on a phylogenetic grouping that included 182 undefined kinases. CONCLUSION: An extensive study on the sugarcane transcriptome was performed. Sugarcane genes responsive to phytohormones and to challenges sugarcane commonly deals with in the field were identified. Additionally, the protein kinases were annotated based on a phylogenetic approach. The experimental design and statistical analysis applied proved robust to unravel genes associated with a diverse array of conditions attributing novel functions to previously unknown or undefined genes. The data consolidated in the SUCAST database resource can guide further studies and be useful for the development of improved sugarcane varieties.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Expressão Gênica , Genes de Plantas/genética , Reguladores de Crescimento de Plantas/farmacologia , Saccharum/genética , Saccharum/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Bases de Dados Genéticas , Desastres , Regulação da Expressão Gênica de Plantas/genética , Herbaspirillum , Mariposas , Análise de Sequência com Séries de Oligonucleotídeos , Fosfatos/deficiência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharum/efeitos dos fármacos , Saccharum/microbiologia , Transdução de Sinais/genética
16.
Genetics ; 173(2): 877-89, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16582429

RESUMO

Efforts to describe toxins from the two major families of venomous snakes (Viperidae and Elapidae) usually reveal proteins belonging to few structural types, particular of each family. Here we carried on an effort to determine uncommon cDNAs that represent possible new toxins from Lachesis muta (Viperidae). In addition to nine classes of typical toxins, atypical molecules never observed in the hundreds of Viperidae snakes studied so far are highly expressed: a diverging C-type lectin that is related to Viperidae toxins but appears to be independently originated; an ohanin-like toxin, which would be the third member of the most recently described class of Elapidae toxins, related to human butyrophilin and B30.2 proteins; and a 3FTx-like toxin, a new member of the widely studied three-finger family of proteins, which includes major Elapidae neurotoxins and CD59 antigen. The presence of these common and uncommon molecules suggests that the repertoire of toxins could be more conserved between families than has been considered, and their features indicate a dynamic process of venom evolution through molecular mechanisms, such as multiple recruitments of important scaffolds and domain exchange between paralogs, always keeping a minimalist nature in most toxin structures in opposition to their nontoxin counterparts.


Assuntos
Venenos de Crotalídeos/química , Venenos de Crotalídeos/genética , DNA Complementar/genética , Venenos Elapídicos/química , Venenos Elapídicos/genética , Elapidae/genética , Evolução Molecular , Viperidae/genética , Sequência de Aminoácidos , Animais , Venenos de Crotalídeos/classificação , Venenos Elapídicos/classificação , Elapidae/classificação , Etiquetas de Sequências Expressas , Dados de Sequência Molecular , Família Multigênica , Filogenia , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Viperidae/classificação
17.
Nat Genet ; 35(2): 148-57, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12973350

RESUMO

Schistosoma mansoni is the primary causative agent of schistosomiasis, which affects 200 million individuals in 74 countries. We generated 163,000 expressed-sequence tags (ESTs) from normalized cDNA libraries from six selected developmental stages of the parasite, resulting in 31,000 assembled sequences and 92% sampling of an estimated 14,000 gene complement. By analyzing automated Gene Ontology assignments, we provide a detailed view of important S. mansoni biological systems, including characterization of metazoa-specific and eukarya-conserved genes. Phylogenetic analysis suggests an early divergence from other metazoa. The data set provides insights into the molecular mechanisms of tissue organization, development, signaling, sexual dimorphism, host interactions and immune evasion and identifies novel proteins to be investigated as vaccine candidates and potential drug targets.


Assuntos
Schistosoma mansoni/genética , Transcrição Gênica , Animais , Mapeamento Cromossômico , Etiquetas de Sequências Expressas , Genes de Helmintos , Proteínas de Helminto/genética , Humanos , Dados de Sequência Molecular , Schistosoma mansoni/patogenicidade , Schistosoma mansoni/fisiologia , Esquistossomose mansoni/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...