Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(677): eadc9606, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599005

RESUMO

Degenerative mitral valve (MV) regurgitation (MR) is a highly prevalent heart disease that requires surgery in severe cases. Here, we show that a decrease in the activity of the serotonin transporter (SERT) accelerates MV remodeling and progression to MR. Through studies of a population of patients with MR, we show that selective serotonin reuptake inhibitor (SSRI) use and SERT promoter polymorphism 5-HTTLPR LL genotype were associated with MV surgery at younger age. Functional characterization of 122 human MV samples, in conjunction with in vivo studies in SERT-/- mice and wild-type mice treated with the SSRI fluoxetine, showed that diminished SERT activity in MV interstitial cells (MVICs) contributed to the pathophysiology of MR through enhanced serotonin receptor (HTR) signaling. SERT activity was decreased in LL MVICs partially because of diminished membrane localization of SERT. In mice, fluoxetine treatment or SERT knockdown resulted in thickened MV leaflets. Similarly, silencing of SERT in normal human MVICs led to up-regulation of transforming growth factor ß1 (TGFß1) and collagen (COL1A1) in the presence of serotonin. In addition, treatment of MVICs with fluoxetine not only directly inhibited SERT activity but also decreased SERT expression and increased HTR2B expression. Fluoxetine treatment and LL genotype were also associated with increased COL1A1 expression in the presence of serotonin in MVICs, and these effects were attenuated by HTR2B inhibition. These results suggest that assessment of both 5-HTTLPR genotype and SERT-inhibiting treatments may be useful tools to risk-stratify patients with MV disease to estimate the likelihood of rapid disease progression.


Assuntos
Insuficiência da Valva Mitral , Valva Mitral , Humanos , Animais , Camundongos , Valva Mitral/metabolismo , Insuficiência da Valva Mitral/metabolismo , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Fluoxetina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Serotonina/metabolismo , Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico
2.
Mol Ther Nucleic Acids ; 28: 859-874, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35694211

RESUMO

Arginase deficiency is associated with prominent neuromotor features, including spastic diplegia, clonus, and hyperreflexia; intellectual disability and progressive neurological decline are other signs. In a constitutive murine model, we recently described leukodystrophy as a significant component of the central nervous system features of arginase deficiency. In the present studies, we sought to examine if the administration of a lipid nanoparticle carrying human ARG1 mRNA to constitutive knockout mice could prevent abnormalities in myelination associated with arginase deficiency. Imaging of the cingulum, striatum, and cervical segments of the corticospinal tract revealed a drastic reduction of myelinated axons; signs of degenerating axons were also present with thin myelin layers. Lipid nanoparticle/ARG1 mRNA administration resulted in both light and electron microscopic evidence of a dramatic recovery of myelin density compared with age-matched controls; oligodendrocytes were seen to be extending processes to wrap many axons. Abnormally thin myelin layers, when myelination was present, were resolved with intermittent mRNA administration, indicative of not only a greater density of myelinated axons but also an increase in the thickness of the myelin sheath. In conclusion, lipid nanoparticle/ARG1 mRNA administration in arginase deficiency prevents the associated leukodystrophy and restores normal oligodendrocyte function.

3.
Mol Ther Methods Clin Dev ; 25: 278-296, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35505663

RESUMO

Creatine deficiency disorders are inborn errors of creatine metabolism, an energy homeostasis molecule. One of these, guanidinoacetate N-methyltransferase (GAMT) deficiency, has clinical characteristics that include features of autism, self-mutilation, intellectual disability, and seizures, with approximately 40% having a disorder of movement; failure to thrive can also be a component. Along with low creatine levels, guanidinoacetic acid (GAA) toxicity has been implicated in the pathophysiology of the disorder. Present-day therapy with oral creatine to control GAA lacks efficacy; seizures can persist. Dietary management and pharmacological ornithine treatment are challenging. Using an AAV-based gene therapy approach to express human codon-optimized GAMT in hepatocytes, in situ hybridization, and immunostaining, we demonstrated pan-hepatic GAMT expression. Serial collection of blood demonstrated a marked early and sustained reduction of GAA with normalization of plasma creatine; urinary GAA levels also markedly declined. The terminal time point demonstrated marked improvement in cerebral and myocardial creatine levels. In conjunction with the biochemical findings, treated mice gained weight to nearly match their wild-type littermates, while behavioral studies demonstrated resolution of abnormalities; PET-CT imaging demonstrated improvement in brain metabolism. In conclusion, a gene therapy approach can result in long-term normalization of GAA with increased creatine in guanidinoacetate N-methyltransferase deficiency and at the same time resolves the behavioral phenotype in a murine model of the disorder. These findings have important implications for the development of a new therapy for this abnormality of creatine metabolism.

4.
Cancer Metab ; 9(1): 40, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34861885

RESUMO

BACKGROUND: Kidney cancer is a common adult malignancy in the USA. Clear cell renal cell carcinoma (ccRCC), the predominant subtype of kidney cancer, is characterized by widespread metabolic changes. Urea metabolism is one such altered pathway in ccRCC. The aim of this study was to elucidate the contributions of urea cycle enzymes, argininosuccinate synthase 1 (ASS1), and argininosuccinate lyase (ASL) towards ccRCC progression. METHODS: We employed a combination of computational, genetic, and metabolomic tools along with in vivo animal models to establish a tumor-suppressive role for ASS1 and ASL in ccRCC. RESULTS: We show that the mRNA and protein expression of urea cycle enzymes ASS1 and ASL are reduced in ccRCC tumors when compared to the normal kidney. Furthermore, the loss of ASL in HK-2 cells (immortalized renal epithelial cells) promotes growth in 2D and 3D growth assays, while combined re-expression of ASS1 and ASL in ccRCC cell lines suppresses growth in 2D, 3D, and in vivo xenograft models. We establish that this suppression is dependent on their enzymatic activity. Finally, we demonstrate that conservation of cellular aspartate, regulation of nitric oxide synthesis, and pyrimidine production play pivotal roles in ASS1+ASL-mediated growth suppression in ccRCC. CONCLUSIONS: ccRCC tumors downregulate the components of the urea cycle including the enzymes argininosuccinate synthase 1 (ASS1) and argininosuccinate lyase (ASL). These cytosolic enzymes lie at a critical metabolic hub in the cell and are involved in aspartate catabolism and arginine and nitric oxide biosynthesis. Loss of ASS1 and ASL helps cells redirect aspartate towards pyrimidine synthesis and support enhanced proliferation. Additionally, reduced levels of ASS1 and ASL might help regulate nitric oxide (NO) generation and mitigate its cytotoxic effects. Overall, our work adds to the understanding of urea cycle enzymes in a context-independent of ureagenesis, their role in ccRCC progression, and uncovers novel potential metabolic vulnerabilities in ccRCC.

5.
Cancer Res ; 81(17): 4417-4430, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34233924

RESUMO

High-risk neuroblastoma remains therapeutically challenging to treat, and the mechanisms promoting disease aggression are poorly understood. Here, we show that elevated expression of dihydrolipoamide S-succinyltransferase (DLST) predicts poor treatment outcome and aggressive disease in patients with neuroblastoma. DLST is an E2 component of the α-ketoglutarate (αKG) dehydrogenase complex, which governs the entry of glutamine into the tricarboxylic acid cycle (TCA) for oxidative decarboxylation. During this irreversible step, αKG is converted into succinyl-CoA, producing NADH for oxidative phosphorylation (OXPHOS). Utilizing a zebrafish model of MYCN-driven neuroblastoma, we demonstrate that even modest increases in DLST expression promote tumor aggression, while monoallelic dlst loss impedes disease initiation and progression. DLST depletion in human MYCN-amplified neuroblastoma cells minimally affected glutamine anaplerosis and did not alter TCA cycle metabolites other than αKG. However, DLST loss significantly suppressed NADH production and impaired OXPHOS, leading to growth arrest and apoptosis of neuroblastoma cells. In addition, multiple inhibitors targeting the electron transport chain, including the potent IACS-010759 that is currently in clinical testing for other cancers, efficiently reduced neuroblastoma proliferation in vitro. IACS-010759 also suppressed tumor growth in zebrafish and mouse xenograft models of high-risk neuroblastoma. Together, these results demonstrate that DLST promotes neuroblastoma aggression and unveils OXPHOS as an essential contributor to high-risk neuroblastoma. SIGNIFICANCE: These findings demonstrate a novel role for DLST in neuroblastoma aggression and identify the OXPHOS inhibitor IACS-010759 as a potential therapeutic strategy for this deadly disease.


Assuntos
Aciltransferases/metabolismo , Neoplasias Encefálicas/metabolismo , Neuroblastoma/metabolismo , Fosforilação Oxidativa , Animais , Apoptose , Linhagem Celular Tumoral , Colágeno/química , Modelos Animais de Doenças , Combinação de Medicamentos , Feminino , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Concentração Inibidora 50 , Complexo Cetoglutarato Desidrogenase/metabolismo , Laminina/química , Camundongos , Camundongos Endogâmicos BALB C , Invasividade Neoplásica , Transplante de Neoplasias , Oxigênio/metabolismo , Proteoglicanas/química , Interferência de RNA , Risco , Smegmamorpha , Resultado do Tratamento , Ácidos Tricarboxílicos/metabolismo , Peixe-Zebra
6.
Nat Metab ; 3(3): 327-336, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33758423

RESUMO

Glycogen accumulation is a highly consistent, distinguishable characteristic of clear cell renal cell carcinoma (ccRCC)1. While elevated glycogen pools might be advantageous for ccRCC cells in nutrient-deprived microenvironments to sustain tumour viability, data supporting a biological role for glycogen in ccRCC are lacking. Here, we demonstrate that glycogen metabolism is not required for ccRCC proliferation in vitro nor xenograft tumour growth in vivo. Disruption of glycogen synthesis by CRISPR-mediated knockout of glycogen synthase 1 (GYS1) has no effect on proliferation in multiple cell lines, regardless of glucose concentrations or oxygen levels. Similarly, prevention of glycogen breakdown by deletion or pharmacological inhibition of glycogen phosphorylase B (PYGB) and L (PYGL) has no impact on cell viability under any condition tested. Lastly, in vivo xenograft experiments using the ccRCC cell line, UMRC2, reveal no substantial changes in tumour size or volume when glycogen metabolism is altered, largely mimicking the phenotype of our in vitro observations. Our findings suggest that glycogen build-up in established ccRCC tumour cells is likely to be a secondary, and apparently dispensable, consequence of constitutively active hypoxia-inducible factor 1-alpha (HIF-1α) signalling.


Assuntos
Carcinoma de Células Renais/metabolismo , Glicogênio/metabolismo , Neoplasias Renais/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase/genética , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Microambiente Tumoral
7.
Obstet Gynecol ; 136(4): 756-764, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32925625

RESUMO

OBJECTIVE: To compare maternal and cord blood penicillin concentrations in women with and without obesity who are receiving intrapartum group B streptococcus (GBS) prophylaxis. METHODS: We performed a prospective cohort study of term women receiving intrapartum penicillin prophylaxis for GBS colonization (determined by antenatal rectovaginal culture). The following outcomes were compared between obese (body mass index [BMI] 35 or higher at delivery) and nonobese (BMI less than 30 at delivery) groups: penicillin concentration in maternal blood (after two penicillin doses) and umbilical cord blood, GBS rectovaginal colonization status on admission and after two completed doses, and neonatal GBS colonization (using a postnatal ear swab). Fifty-five women were needed to detect a 0.75 SD difference in cord blood penicillin concentrations. RESULTS: Fifty-five women were enrolled and had all specimens collected; 49 had complete data for analysis (obese n=25, nonobese n=24). There was no difference in the median maternal penicillin concentration between groups (obese 4.2 micrograms/mL vs nonobese 4.0 micrograms/mL, P=.58). There was, however, a 60% lower median cord blood penicillin concentration in the obese compared with the nonobese group (2.7 micrograms/mL vs 6.7 micrograms/mL, respectively, P<.01), with no significant difference in time from last penicillin dose to delivery (obese 2.9 hours vs nonobese 1.7 hours, P=.07). The difference in cord blood concentrations remained significant after adjustment for nulliparity, hypertensive disorders, and time from last penicillin dose to delivery. Only 59.6% of women tested positive for GBS by rectovaginal culture on admission (obese 60.9% vs nonobese 58.3%, P=.86). CONCLUSION: The median cord blood penicillin concentration was 60% lower in neonates born to women with obesity compared with those born to women without obesity. However, all concentrations exceeded the minimum inhibitory concentration. Maternal penicillin levels were not significantly different between groups. More than 40% of women who previously tested positive for GBS by antenatal culture tested negative for GBS on admission for delivery.


Assuntos
Sangue Fetal/química , Triagem Neonatal/métodos , Obesidade , Penicilinas , Complicações Infecciosas na Gravidez , Infecções Estreptocócicas , Streptococcus agalactiae/isolamento & purificação , Adulto , Antibacterianos/sangue , Antibacterianos/uso terapêutico , Antibioticoprofilaxia/métodos , Índice de Massa Corporal , Monitoramento de Medicamentos/métodos , Feminino , Humanos , Recém-Nascido , Masculino , Obesidade/sangue , Obesidade/complicações , Obesidade/diagnóstico , Avaliação de Processos e Resultados em Cuidados de Saúde , Penicilinas/sangue , Penicilinas/uso terapêutico , Gravidez , Complicações Infecciosas na Gravidez/sangue , Complicações Infecciosas na Gravidez/tratamento farmacológico , Reto/microbiologia , Infecções Estreptocócicas/sangue , Infecções Estreptocócicas/complicações , Infecções Estreptocócicas/tratamento farmacológico , Vagina/microbiologia
8.
Cell Rep ; 32(10): 108108, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32905773

RESUMO

The metabolic program of osteoblasts, the chief bone-making cells, remains incompletely understood. Here in murine calvarial cells, we establish that osteoblast differentiation under aerobic conditions is coupled with a marked increase in glucose consumption and lactate production but reduced oxygen consumption. As a result, aerobic glycolysis accounts for approximately 80% of the ATP production in mature osteoblasts. In vivo tracing with 13C-labeled glucose in the mouse shows that glucose in bone is readily metabolized to lactate but not organic acids in the TCA cycle. Glucose tracing in osteoblast cultures reveals that pyruvate is carboxylated to form malate integral to the malate-aspartate shuttle. RNA sequencing (RNA-seq) identifies Me2, encoding the mitochondrial NAD-dependent isoform of malic enzyme, as being specifically upregulated during osteoblast differentiation. Knockdown of Me2 markedly reduces the glycolytic flux and impairs osteoblast proliferation and differentiation. Thus, the mitochondrial malic enzyme functionally couples the mitochondria with aerobic glycolysis in osteoblasts.


Assuntos
Mitocôndrias/metabolismo , Osteoblastos/metabolismo , Efeito Warburg em Oncologia , Animais , Humanos , Malatos , Camundongos
10.
Ophthalmol Retina ; 4(9): 889-898, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32418846

RESUMO

PURPOSE: Alpha lipoic acid (ALA) is a nutraceutical and potent antioxidant that has shown efficacy in the retina light damage mouse model and in humans for multiple sclerosis. Our objective was to evaluate the efficacy and safety of oral ALA for the treatment of geographic atrophy (GA). DESIGN: Randomized, controlled, double-masked, multicenter phase 2 clinical trial of ALA versus placebo. PARTICIPANTS: Participants with unilateral or bilateral GA from age-related macular degeneration. METHODS: Participants were randomized to 1200 mg daily of ALA or placebo. Fundus autofluorescence, fundus color photography, and spectral-domain OCT were conducted and best-corrected visual acuity (BCVA) was obtained at baseline and every 6 months through month 18. MAIN OUTCOME MEASURES: Annual rate of change over 18 months in square root-transformed area of GA in study eyes as measured on fundus autofluorescence. Secondary outcomes included the number of adverse events (AEs), change in BCVA, and annual rate of change in area of GA measured on color photographs. RESULTS: Fifty-three participants (mean age, 80 years) were randomized (April 2016-August 2017). Twenty-seven participants (37 eyes) were in the placebo group, and 26 participants (36 eyes) were in the ALA group. Unadjusted mean (standard error) annual change in GA area was 0.28 (0.02) mm and 0.31 (0.02) mm for the placebo and ALA groups, respectively (difference, 0.04 mm; 95% confidence interval [CI], -0.03 to 0.11 mm; P = 0.30). Adjusting for baseline GA area, number of GA lesions, and presence of subfoveal GA, the mean annual change in GA area was 0.27 (0.04) mm and 0.32 (0.05) mm for the placebo and ALA groups, respectively (difference, 0.05 mm; 95% CI, -0.02 to 0.12 mm; P = 0.14). At 18 months, the percent of eyes losing 15 letters or more of BCVA was 22% (8 of 36) and 14% (5 of 36) in the placebo and ALA groups, respectively (P = 0.54). No difference was found in the percentage of participants with nonserious AEs (P = 0.96) or serious AEs (P = 0.28) between the placebo and ALA groups. CONCLUSIONS: Results do not support ALA having beneficial effects on GA or BCVA. This trial design may be useful for other GA repurposing drug trials.


Assuntos
Angiofluoresceinografia/métodos , Atrofia Geográfica/tratamento farmacológico , Ácido Tióctico/administração & dosagem , Acuidade Visual , Administração Oral , Idoso , Idoso de 80 Anos ou mais , Antioxidantes/administração & dosagem , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Fundo de Olho , Atrofia Geográfica/diagnóstico , Humanos , Masculino , Estudos Prospectivos , Resultado do Tratamento
11.
Nat Commun ; 11(1): 498, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980651

RESUMO

Tumour cells frequently utilize glutamine to meet bioenergetic and biosynthetic demands of rapid cell growth. However, glutamine dependence can be highly variable between in vitro and in vivo settings, based on surrounding microenvironments and complex adaptive responses to glutamine deprivation. Soft tissue sarcomas (STSs) are mesenchymal tumours where cytotoxic chemotherapy remains the primary approach for metastatic or unresectable disease. Therefore, it is critical to identify alternate therapies to improve patient outcomes. Using autochthonous STS murine models and unbiased metabolomics, we demonstrate that glutamine metabolism supports sarcomagenesis. STS subtypes expressing elevated glutaminase (GLS) levels are highly sensitive to glutamine starvation. In contrast to previous studies, treatment of autochthonous tumour-bearing animals with Telaglenastat (CB-839), an orally bioavailable GLS inhibitor, successfully inhibits undifferentiated pleomorphic sarcoma (UPS) tumour growth. We reveal glutamine metabolism as critical for sarcomagenesis, with CB-839 exhibiting potent therapeutic potential.


Assuntos
Glutamina/metabolismo , Sarcoma/metabolismo , Sarcoma/patologia , Aloenxertos/efeitos dos fármacos , Aloenxertos/metabolismo , Animais , Benzenoacetamidas/farmacologia , Benzenoacetamidas/uso terapêutico , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Glutaminase/antagonistas & inibidores , Glutaminase/genética , Glutaminase/metabolismo , Camundongos , Nucleosídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sarcoma/diagnóstico por imagem , Sarcoma/tratamento farmacológico , Tiadiazóis/farmacologia , Tiadiazóis/uso terapêutico , Tomografia Computadorizada por Raios X
12.
Cell Metab ; 31(1): 174-188.e7, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31761563

RESUMO

The remarkable cellular and genetic heterogeneity of soft tissue sarcomas (STSs) limits the clinical benefit of targeted therapies. Here, we show that expression of the gluconeogenic isozyme fructose-1,6-bisphosphatase 2 (FBP2) is silenced in a broad spectrum of sarcoma subtypes, revealing an apparent common metabolic feature shared by diverse STSs. Enforced FBP2 expression inhibits sarcoma cell and tumor growth through two distinct mechanisms. First, cytosolic FBP2 antagonizes elevated glycolysis associated with the "Warburg effect," thereby inhibiting sarcoma cell proliferation. Second, nuclear-localized FBP2 restrains mitochondrial biogenesis and respiration in a catalytic-activity-independent manner by inhibiting the expression of nuclear respiratory factor and mitochondrial transcription factor A (TFAM). Specifically, nuclear FBP2 colocalizes with the c-Myc transcription factor at the TFAM locus and represses c-Myc-dependent TFAM expression. This unique dual function of FBP2 provides a rationale for its selective suppression in STSs, identifying a potential metabolic vulnerability of this malignancy and possible therapeutic target.


Assuntos
Núcleo Celular/metabolismo , Proliferação de Células/genética , Frutose-Bifosfatase/metabolismo , Glicólise/genética , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sarcoma/metabolismo , Animais , Linhagem Celular Tumoral , Núcleo Celular/genética , Proliferação de Células/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ciclo do Ácido Cítrico/genética , Citosol/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Regulação para Baixo , Doxiciclina/farmacologia , Feminino , Frutose-Bifosfatase/genética , Expressão Gênica , Gluconeogênese/genética , Gluconeogênese/fisiologia , Glicólise/efeitos dos fármacos , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Microscopia Eletrônica de Transmissão , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Biogênese de Organelas , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Sarcoma/enzimologia , Sarcoma/genética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Proc Natl Acad Sci U S A ; 116(32): 16028-16035, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31253706

RESUMO

Diseases associated with mitochondrial DNA (mtDNA) mutations are highly variable in phenotype, in large part because of differences in the percentage of normal and mutant mtDNAs (heteroplasmy) present within the cell. For example, increasing heteroplasmy levels of the mtDNA tRNALeu(UUR) nucleotide (nt) 3243A > G mutation result successively in diabetes, neuromuscular degenerative disease, and perinatal lethality. These phenotypes are associated with differences in mitochondrial function and nuclear DNA (nDNA) gene expression, which are recapitulated in cybrid cell lines with different percentages of m.3243G mutant mtDNAs. Using metabolic tracing, histone mass spectrometry, and NADH fluorescence lifetime imaging microscopy in these cells, we now show that increasing levels of this single mtDNA mutation cause profound changes in the nuclear epigenome. At high heteroplasmy, mitochondrially derived acetyl-CoA levels decrease causing decreased histone H4 acetylation, with glutamine-derived acetyl-CoA compensating when glucose-derived acetyl-CoA is limiting. In contrast, α-ketoglutarate levels increase at midlevel heteroplasmy and are inversely correlated with histone H3 methylation. Inhibition of mitochondrial protein synthesis induces acetylation and methylation changes, and restoration of mitochondrial function reverses these effects. mtDNA heteroplasmy also affects mitochondrial NAD+/NADH ratio, which correlates with nuclear histone acetylation, whereas nuclear NAD+/NADH ratio correlates with changes in nDNA and mtDNA transcription. Thus, mutations in the mtDNA cause distinct metabolic and epigenomic changes at different heteroplasmy levels, potentially explaining transcriptional and phenotypic variability of mitochondrial disease.


Assuntos
Núcleo Celular/genética , DNA Mitocondrial/genética , Epigenoma , Acetilcoenzima A/metabolismo , Linhagem Celular , Histonas/metabolismo , Humanos , Metaboloma , Mitocôndrias/metabolismo , NAD/metabolismo , Transcrição Gênica
14.
Am J Sports Med ; 46(9): 2222-2231, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29927623

RESUMO

BACKGROUND: Tendon injuries are common problems among athletes. Complete recovery of the mechanical structure and function of ruptured tendons is challenging. It has been demonstrated that upregulation of glycolysis and lactate production occurs in wounds, inflammation sites, and cancerous tumors, and these metabolic changes also control growth and differentiation of stem and progenitor cells. Similar metabolic changes have been reported in human healing tendons. In addition, lactate production has increased in progenitors isolated from injured tendons after treatment with IL-1ß. It is thought that the metabolic changes play a role in tendon healing after injury. HYPOTHESIS: Glucose metabolism is altered during tendon injury and healing, and modulation of this altered metabolism improves tendon repair. STUDY DESIGN: Controlled laboratory study. METHODS: The authors used the tendon injury model involving a complete incision of the Achilles tendon in C57BL/6J female mice and studied alterations of glucose metabolism in injured tendons with [U-13C]glucose and metabolomics analysis 1 and 4 weeks after surgery. They also examined the effects of dichloroacetate (DCA; an indirect lactate synthesis inhibitor) treatment on the recovery of structure and mechanical properties of injured tendons 4 weeks after surgery in the same mouse model. RESULTS: Significant changes in glucose metabolism in tendons after injury surgery were detected. 13C enrichment of metabolites and intermediates, flux through glycolysis, and lactate synthesis, as well as tricarboxylic acid cycle activity, were acutely increased 1 week after injury. Increased glycolysis and lactate generation were also found 4 weeks after injury. DCA-treated injured tendons showed decreased cross-sectional area and higher values of modulus, maximum stress, and maximum force when compared with vehicle-treated injured tendons. Improved alignment of the collagen fibers was also observed in the DCA group. Furthermore, DCA treatment reduced mucoid accumulation and ectopic calcification in injured tendons. CONCLUSION: The findings indicate that injured tendons acutely increase glycolysis and lactate synthesis after injury and that the inhibition of lactate synthesis by DCA is beneficial for tendon healing. CLINICAL RELEVANCE: Changing metabolism in injured tendons may be a therapeutic target for tendon repair.


Assuntos
Tendão do Calcâneo/lesões , Glucose/metabolismo , Lactatos/metabolismo , Traumatismos dos Tendões/reabilitação , Cicatrização/fisiologia , Animais , Fenômenos Biomecânicos , Colágeno/metabolismo , Ácido Dicloroacético , Modelos Animais de Doenças , Feminino , Glicólise , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória
15.
Cell Metab ; 27(6): 1263-1280.e6, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29754953

RESUMO

Kidney cancer, one of the ten most prevalent malignancies in the world, has exhibited increased incidence over the last decade. The most common subtype is "clear cell" renal cell carcinoma (ccRCC), which features consistent metabolic abnormalities, such as highly elevated glycogen and lipid deposition. By integrating metabolomics, genomic, and transcriptomic data, we determined that enzymes in multiple metabolic pathways are universally depleted in human ccRCC tumors, which are otherwise genetically heterogeneous. Notably, the expression of key urea cycle enzymes, including arginase 2 (ARG2) and argininosuccinate synthase 1 (ASS1), is strongly repressed in ccRCC. Reduced ARG2 activity promotes ccRCC tumor growth through at least two distinct mechanisms: conserving the critical biosynthetic cofactor pyridoxal phosphate and avoiding toxic polyamine accumulation. Pharmacological approaches to restore urea cycle enzyme expression would greatly expand treatment strategies for ccRCC patients, where current therapies only benefit a subset of those afflicted with renal cancer.


Assuntos
Arginase/metabolismo , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Poliaminas/metabolismo , Animais , Arginase/genética , Argininossuccinato Sintase/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/enzimologia , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/enzimologia , Camundongos , Camundongos Nus , Fosfato de Piridoxal/metabolismo , Ureia/metabolismo
16.
Diabetes ; 66(7): 1901-1913, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28442472

RESUMO

Loss-of-function mutations of ß-cell KATP channels cause the most severe form of congenital hyperinsulinism (KATPHI). KATPHI is characterized by fasting and protein-induced hypoglycemia that is unresponsive to medical therapy. For a better understanding of the pathophysiology of KATPHI, we examined cytosolic calcium ([Ca2+] i ), insulin secretion, oxygen consumption, and [U-13C]glucose metabolism in islets isolated from the pancreases of children with KATPHI who required pancreatectomy. Basal [Ca2+] i and insulin secretion were higher in KATPHI islets compared with controls. Unlike controls, insulin secretion in KATPHI islets increased in response to amino acids but not to glucose. KATPHI islets have an increased basal rate of oxygen consumption and mitochondrial mass. [U-13C]glucose metabolism showed a twofold increase in alanine levels and sixfold increase in 13C enrichment of alanine in KATPHI islets, suggesting increased rates of glycolysis. KATPHI islets also exhibited increased serine/glycine and glutamine biosynthesis. In contrast, KATPHI islets had low γ-aminobutyric acid (GABA) levels and lacked 13C incorporation into GABA in response to glucose stimulation. The expression of key genes involved in these metabolic pathways was significantly different in KATPHI ß-cells compared with control, providing a mechanism for the observed changes. These findings demonstrate that the pathophysiology of KATPHI is complex, and they provide a framework for the identification of new potential therapeutic targets for this devastating condition.


Assuntos
Cálcio/metabolismo , Hiperinsulinismo Congênito/metabolismo , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Consumo de Oxigênio , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores de Sulfonilureias/metabolismo , Alanina/metabolismo , Isótopos de Carbono , Estudos de Casos e Controles , Hiperinsulinismo Congênito/genética , Hiperinsulinismo Congênito/cirurgia , Feminino , Citometria de Fluxo , Expressão Gênica , Glutamina/biossíntese , Glicina/biossíntese , Glicólise/genética , Humanos , Imuno-Histoquímica , Lactente , Recém-Nascido , Secreção de Insulina , Células Secretoras de Insulina/ultraestrutura , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/ultraestrutura , Canais KATP/genética , Canais KATP/metabolismo , Masculino , Metabolômica , Microscopia Eletrônica de Transmissão , Mutação , Pancreatectomia , Canais de Potássio Corretores do Fluxo de Internalização/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Serina/biossíntese , Receptores de Sulfonilureias/genética , Ácido gama-Aminobutírico/metabolismo
17.
Sci Signal ; 8(384): ra68, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26152695

RESUMO

Nitric oxide (NO) is a signaling intermediate during glutamatergic neurotransmission in the central nervous system (CNS). NO signaling is in part accomplished through cysteine S-nitrosylation, a posttranslational modification by which NO regulates protein function and signaling. In our investigation of the protein targets and functional impact of S-nitrosylation in the CNS under physiological conditions, we identified 269 S-nitrosocysteine residues in 136 proteins in the wild-type mouse brain. The number of sites was significantly reduced in the brains of mice lacking endothelial nitric oxide synthase (eNOS(-/-)) or neuronal nitric oxide synthase (nNOS(-/-)). In particular, nNOS(-/-) animals showed decreased S-nitrosylation of proteins that participate in the glutamate/glutamine cycle, a metabolic process by which synaptic glutamate is recycled or oxidized to provide energy. (15)N-glutamine-based metabolomic profiling and enzymatic activity assays indicated that brain extracts from nNOS(-/-) mice converted less glutamate to glutamine and oxidized more glutamate than those from mice of the other genotypes. GLT1 [also known as EAAT2 (excitatory amino acid transporter 2)], a glutamate transporter in astrocytes, was S-nitrosylated at Cys(373) and Cys(561) in wild-type and eNOS(-/-) mice, but not in nNOS(-/-) mice. A form of rat GLT1 that could not be S-nitrosylated at the equivalent sites had increased glutamate uptake compared to wild-type GLT1 in cells exposed to an S-nitrosylating agent. Thus, NO modulates glutamatergic neurotransmission through the selective, nNOS-dependent S-nitrosylation of proteins that govern glutamate transport and metabolism.


Assuntos
Encéfalo/metabolismo , Cisteína/metabolismo , Ácido Glutâmico/metabolismo , Óxido Nítrico/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Cromatografia Líquida , Cisteína/análogos & derivados , Cisteína/genética , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Glutamina/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Mutação , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Ratos , S-Nitrosotióis/metabolismo , Espectrometria de Massas em Tandem
18.
Nature ; 513(7517): 251-5, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25043030

RESUMO

Clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer, is characterized by elevated glycogen levels and fat deposition. These consistent metabolic alterations are associated with normoxic stabilization of hypoxia-inducible factors (HIFs) secondary to von Hippel-Lindau (VHL) mutations that occur in over 90% of ccRCC tumours. However, kidney-specific VHL deletion in mice fails to elicit ccRCC-specific metabolic phenotypes and tumour formation, suggesting that additional mechanisms are essential. Recent large-scale sequencing analyses revealed the loss of several chromatin remodelling enzymes in a subset of ccRCC (these included polybromo-1, SET domain containing 2 and BRCA1-associated protein-1, among others), indicating that epigenetic perturbations are probably important contributors to the natural history of this disease. Here we used an integrative approach comprising pan-metabolomic profiling and metabolic gene set analysis and determined that the gluconeogenic enzyme fructose-1,6-bisphosphatase 1 (FBP1) is uniformly depleted in over six hundred ccRCC tumours examined. Notably, the human FBP1 locus resides on chromosome 9q22, the loss of which is associated with poor prognosis for ccRCC patients. Our data further indicate that FBP1 inhibits ccRCC progression through two distinct mechanisms. First, FBP1 antagonizes glycolytic flux in renal tubular epithelial cells, the presumptive ccRCC cell of origin, thereby inhibiting a potential Warburg effect. Second, in pVHL (the protein encoded by the VHL gene)-deficient ccRCC cells, FBP1 restrains cell proliferation, glycolysis and the pentose phosphate pathway in a catalytic-activity-independent manner, by inhibiting nuclear HIF function via direct interaction with the HIF inhibitory domain. This unique dual function of the FBP1 protein explains its ubiquitous loss in ccRCC, distinguishing FBP1 from previously identified tumour suppressors that are not consistently mutated in all tumours.


Assuntos
Carcinoma de Células Renais/enzimologia , Frutose-Bifosfatase/metabolismo , Neoplasias Renais/enzimologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/fisiopatologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Células Epiteliais/metabolismo , Frutose-Bifosfatase/química , Frutose-Bifosfatase/genética , Glicólise , Humanos , Neoplasias Renais/genética , Neoplasias Renais/fisiopatologia , Modelos Moleculares , NADP/metabolismo , Estrutura Terciária de Proteína , Suínos
19.
J Biol Chem ; 289(14): 9710-29, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24523404

RESUMO

Agmatine (AGM), a product of arginine decarboxylation, influences multiple physiologic and metabolic functions. However, the mechanism(s) of action, the impact on whole body gene expression and metabolic pathways, and the potential benefits and risks of long term AGM consumption are still a mystery. Here, we scrutinized the impact of AGM on whole body metabolic profiling and gene expression and assessed a plausible mechanism(s) of AGM action. Studies were performed in rats fed a high fat diet or standard chow. AGM was added to drinking water for 4 or 8 weeks. We used (13)C or (15)N tracers to assess metabolic reactions and fluxes and real time quantitative PCR to determine gene expression. The results demonstrate that AGM elevated the synthesis and tissue level of cAMP. Subsequently, AGM had a widespread impact on gene expression and metabolic profiling including (a) activation of peroxisomal proliferator-activated receptor-α and its coactivator, PGC1α, and (b) increased expression of peroxisomal proliferator-activated receptor-γ and genes regulating thermogenesis, gluconeogenesis, and carnitine biosynthesis and transport. The changes in gene expression were coupled with improved tissue and systemic levels of carnitine and short chain acylcarnitine, increased ß-oxidation but diminished incomplete fatty acid oxidation, decreased fat but increased protein mass, and increased hepatic ureagenesis and gluconeogenesis but decreased glycolysis. These metabolic changes were coupled with reduced weight gain and a curtailment of the hormonal and metabolic derangements associated with high fat diet-induced obesity. The findings suggest that AGM elevated the synthesis and levels of cAMP, thereby mimicking the effects of caloric restriction with respect to metabolic reprogramming.


Assuntos
Agmatina/farmacologia , AMP Cíclico/metabolismo , Ácidos Graxos/metabolismo , Gluconeogênese/efeitos dos fármacos , Fígado/metabolismo , Obesidade/tratamento farmacológico , Agmatina/farmacocinética , Animais , Transporte Biológico Ativo/efeitos dos fármacos , Carnitina/análogos & derivados , Carnitina/metabolismo , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Metaboloma , Obesidade/induzido quimicamente , Obesidade/metabolismo , Oxirredução/efeitos dos fármacos , PPAR gama/biossíntese , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Fatores de Transcrição/biossíntese
20.
Cell ; 152(4): 778-790, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23394946

RESUMO

Survival in the wild requires organismal adaptations to the availability of nutrients. Endosomes and lysosomes are key intracellular organelles that couple nutrition and metabolic status to cellular responses, but how they detect cytosolic ATP levels is not well understood. Here, we identify an endolysosomal ATP-sensitive Na(+) channel (lysoNa(ATP)). The channel is a complex formed by two-pore channels (TPC1 and TPC2), ion channels previously thought to be gated by nicotinic acid adenine dinucleotide phosphate (NAADP), and the mammalian target of rapamycin (mTOR). The channel complex detects nutrient status, becomes constitutively open upon nutrient removal and mTOR translocation off the lysosomal membrane, and controls the lysosome's membrane potential, pH stability, and amino acid homeostasis. Mutant mice lacking lysoNa(ATP) have much reduced exercise endurance after fasting. Thus, TPCs make up an ion channel family that couples the cell's metabolic state to endolysosomal function and are crucial for physical endurance during food restriction.


Assuntos
Trifosfato de Adenosina/metabolismo , Canais de Cálcio/metabolismo , Lisossomos/metabolismo , Canais de Sódio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Adenilato Quinase/metabolismo , Aminoácidos/metabolismo , Animais , Canais de Cálcio/química , Canais de Cálcio/genética , Jejum , Técnicas de Inativação de Genes , Homeostase , Humanos , Concentração de Íons de Hidrogênio , Potenciais da Membrana , Camundongos , Resistência Física
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...