Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Cancer Res ; 84(7): 1165-1177, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38315789

RESUMO

Artificial intelligence (AI)-powered approaches are becoming increasingly used as histopathologic tools to extract subvisual features and improve diagnostic workflows. On the other hand, hi-plex approaches are widely adopted to analyze the immune ecosystem in tumor specimens. Here, we aimed at combining AI-aided histopathology and imaging mass cytometry (IMC) to analyze the ecosystem of non-small cell lung cancer (NSCLC). An AI-based approach was used on hematoxylin and eosin (H&E) sections from 158 NSCLC specimens to accurately identify tumor cells, both adenocarcinoma and squamous carcinoma cells, and to generate a classifier of tumor cell spatial clustering. Consecutive tissue sections were stained with metal-labeled antibodies and processed through the IMC workflow, allowing quantitative detection of 24 markers related to tumor cells, tissue architecture, CD45+ myeloid and lymphoid cells, and immune activation. IMC identified 11 macrophage clusters that mainly localized in the stroma, except for S100A8+ cells, which infiltrated tumor nests. T cells were preferentially localized in peritumor areas or in tumor nests, the latter being associated with better prognosis, and they were more abundant in highly clustered tumors. Integrated tumor and immune classifiers were validated as prognostic on whole slides. In conclusion, integration of AI-powered H&E and multiparametric IMC allows investigation of spatial patterns and reveals tissue relevant features with clinical relevance. SIGNIFICANCE: Leveraging artificial intelligence-powered H&E analysis integrated with hi-plex imaging mass cytometry provides insights into the tumor ecosystem and can translate tumor features into classifiers to predict prognosis, genotype, and therapy response.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Inteligência Artificial , Ecossistema , Citometria por Imagem
2.
EBioMedicine ; 101: 105003, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340557

RESUMO

BACKGROUND: Tertiary Lymphoid Structures (TLS) correlate with positive outcomes in patients with NSCLC and the efficacy of immune checkpoint blockade (ICB) in cancer. The actin regulatory protein hMENA undergoes tissue-specific splicing, producing the epithelial hMENA11a linked to favorable prognosis in early NSCLC, and the mesenchymal hMENAΔv6 found in invasive cancer cells and pro-tumoral cancer-associated fibroblasts (CAFs). This study investigates how hMENA isoforms in tumor cells and CAFs relate to TLS presence, localization and impact on patient outcomes and ICB response. METHODS: Methods involved RNA-SEQ on NSCLC cells with depleted hMENA isoforms. A retrospective observational study assessed tissues from surgically treated N0 patients with NSCLC, using immunohistochemistry for tumoral and stromal hMENA isoforms, fibronectin, and TLS presence. ICB-treated patient tumors were analyzed using Nanostring nCounter and GeoMx spatial transcriptomics. Multiparametric flow cytometry characterized B cells and tissue-resident memory T cells (TRM). Survival and ICB response were estimated in the cohort and validated using bioinformatics pipelines in different datasets. FINDINGS: Findings indicate that hMENA11a in NSCLC cells upregulates the TLS regulator LTßR, decreases fibronectin, and favors CXCL13 production by TRM. Conversely, hMENAΔv6 in CAFs inhibits LTßR-related NF-kB pathway, reduces CXCL13 secretion, and promotes fibronectin production. These patterns are validated in N0 NSCLC tumors, where hMENA11ahigh expression, CAF hMENAΔv6low, and stromal fibronectinlow are associated with intratumoral TLS, linked to memory B cells and predictive of longer survival. The hMENA isoform pattern, fibronectin, and LTßR expression broadly predict ICB response in tumors where TLS indicates an anti-tumor immune response. INTERPRETATION: This study uncovers hMENA alternative splicing as an unexplored contributor to TLS-related Tumor Immune Microenvironment (TIME) and a promising biomarker for clinical outcomes and likely ICB responsiveness in N0 patients with NSCLC. FUNDING: This work is supported by AIRC (IG 19822), ACC (RCR-2019-23669120), CAL.HUB.RIA Ministero Salute PNRR-POS T4, "Ricerca Corrente" granted by the Italian Ministry of Health.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Estruturas Linfoides Terciárias , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fibronectinas , Inibidores de Checkpoint Imunológico , Proteínas dos Microfilamentos/metabolismo , Linhagem Celular Tumoral , Isoformas de Proteínas , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Microambiente Tumoral
3.
J Exp Clin Cancer Res ; 42(1): 347, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124183

RESUMO

In recent years, research focused on the multifaceted landscape and functions of cancer-associated fibroblasts (CAFs) aimed to reveal their heterogeneity and identify commonalities across diverse tumors for more effective therapeutic targeting of pro-tumoral stromal microenvironment. However, a unified functional categorization of CAF subsets remains elusive, posing challenges for the development of targeted CAF therapies in clinical settings.The CAF phenotype arises from a complex interplay of signals within the tumor microenvironment, where transcription factors serve as central mediators of various cellular pathways. Recent advances in single-cell RNA sequencing technology have emphasized the role of transcription factors in the conversion of normal fibroblasts to distinct CAF subtypes across various cancer types.This review provides a comprehensive overview of the specific roles of transcription factor networks in shaping CAF heterogeneity, plasticity, and functionality. Beginning with their influence on fibroblast homeostasis and reprogramming during wound healing and fibrosis, it delves into the emerging insights into transcription factor regulatory networks. Understanding these mechanisms not only enables a more precise characterization of CAF subsets but also sheds light on the early regulatory processes governing CAF heterogeneity and functionality. Ultimately, this knowledge may unveil novel therapeutic targets for cancer treatment, addressing the existing challenges of stromal-targeted therapies.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Humanos , Fibroblastos Associados a Câncer/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fibroblastos/metabolismo , Neoplasias/patologia , Fenótipo , Microambiente Tumoral/genética
4.
J Exp Clin Cancer Res ; 42(1): 287, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898752

RESUMO

BACKGROUND: Immune checkpoint blockade (ICB) has significantly prolonged survival of non-small cell lung cancer (NSCLC) patients, although most patients develop mechanisms of resistance. Recently single-cell RNA-sequencing (scRNA-Seq) revealed a huge T-cell phenotypic and (dys)functional state variability. Accordingly, T-cell exhaustion is recognized as a functional adaptation, with a dynamic progression from a long-lived "pre-exhausted stem-like progenitor" to a "terminally exhausted" state. In this scenario it is crucial to understand the complex interplay between co-stimulatory and inhibitory molecules in CD8+ T-cell functionality. METHODS: To gain a baseline landscape of the composition, functional states, and transcriptomic signatures predictive of prognosis, we analyzed CD8+ T-cell subsets characterized by the presence/absence of PD1 and CD28 from periphery, adjacent non-tumor tissue and tumor site of a cohort of treatment-naïve NSCLC patients, by integrated multiparametric flow cytometry, targeted multi-omic scRNA-seq analyses, and computational pipelines. RESULTS: Despite the increased PD1 levels, an improved PD1+CD28+ T-cell polyfunctionality was observed with the transition from periphery to tumor site, associated with lack of TIGIT, TIM-3 and LAG-3, but not with Ag-experienced-marker CD11a. Differently from CD28+ T cells, the increased PD1 levels in the tumor were associated with reduced functionality in PD1+CD28- T cells. CD11ahigh, although expressed only in a small fraction of this subset, still sustained its functionality. Absence of TIGIT, TIM-3 and CTLA-4, alone or combined, was beneficial to CD28- T cells. Notably, we observed distinct TRM phenotypes in the different districts, with CD28+ T cells more capable of producing TGFß in the periphery, potentially contributing to elevated CD103 levels. In contrast CD28- TRM mainly produced CXCL13 within the tumor. ScRNA-seq revealed 5 different clusters for each of the two subsets, with distinctive transcriptional profiles in the three districts. By interrogating the TCGA dataset of patients with lung adenocarcinoma (LUAD) and metastatic NSCLC treated with atezolizumab, we found signatures of heterogeneous TRM and "pre-exhausted" long-lived effector memory CD8+ T cells associated with improved response to ICB only in the presence of CD28. CONCLUSIONS: Our findings identify signatures able to stratify survival of LUAD patients and predict ICB response in advanced NSCLC. CD28 is advocated as a key determinant in the signatures identified, in both periphery and tumor site, thus likely providing feasible biomarkers of ICB response.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linfócitos T CD8-Positivos , Antígenos CD28/genética , Antígenos CD28/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor Celular 2 do Vírus da Hepatite A/genética , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/patologia
5.
Crit Rev Oncol Hematol ; 192: 104190, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37871779

RESUMO

The use of neoadjuvant or perioperative anti-PD(L)1 was recently tested in multiple clinical trials. We performed a systematic review and meta-analysis of randomised trials comparing neoadjuvant or perioperative chemoimmunotherapy to neoadjuvant chemotherapy in resectable NSCLC. Nine reports from 6 studies were included. Receipt of surgery was more frequent in the experimental arm (odds ratio, OR 1.39) as was pCR (OR 7.60). EFS was improved in the experimental arm (hazard ratio, HR 0.55) regardless of stage, histology, PD-L1 expression (PD-L1 negative, HR 0.74) and smoking exposure (never smokers, HR 0.67), as was OS (HR 0.67). Grade > = 3 treatment-related adverse events were more frequent in the experimental arm (OR 1.22). The experimental treatment improved surgical outcomes, pCR rates, EFS and OS in stage II-IIIB, EGFR/ALK negative resectable NSCLC; confirmatory evidence is warranted for stage IIIB tumours and with higher maturity of the OS endpoint.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Terapia Neoadjuvante , Platina/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto
6.
Int J Gynecol Cancer ; 33(11): 1708-1714, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37875322

RESUMO

OBJECTIVE: Current prognostic factors for endometrial cancer are not sufficient to predict recurrence in early stages. Treatment choices are based on the prognostic factors included in the risk classes defined by the ESMO-ESGO-ESTRO (European Society for Medical Oncology-European Society of Gynaecological Oncology-European Society for Radiotherapy and Oncology) consensus conference with the new biomolecular classification based on POLE, TP53, and microsatellite instability status. However, a minority of early stage cases relapse regardless of their low risk profiles. Integration of the immune context status to existing molecular based models has not been fully evaluated. This study aims to investigate whether the integration of the immune landscape in the tumor microenvironment could improve clinical risk prediction models and allow better profiling of early stages. METHODS: Leveraging the potential of in silico deconvolution tools, we estimated the relative abundances of immune populations in public data and then applied feature selection methods to generate a machine learning based model for disease free survival probability prediction. RESULTS: We included information on International Federation of Gynecology and Obstetrics (FIGO) stage, tumor mutational burden, microsatellite instability, POLEmut status, interferon γ signature, and relative abundances of monocytes, natural killer cells, and CD4+T cells to build a relapse prediction model and obtained a balanced accuracy of 69%. We further identified two novel early stage profiles that undergo different pathways of recurrence. CONCLUSION: This study presents an extension of current prognostic factors for endometrial cancer by exploiting machine learning models and deconvolution techniques on available public biomolecular data. Prospective clinical trials are advisable to validate the early stage stratification.


Assuntos
Neoplasias do Endométrio , Instabilidade de Microssatélites , Feminino , Gravidez , Humanos , Estudos Prospectivos , Recidiva Local de Neoplasia , Neoplasias do Endométrio/patologia , Oncologia , Recidiva , Microambiente Tumoral
7.
J Immunother Cancer ; 11(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37612043

RESUMO

BACKGROUND: Understanding how cancer signaling pathways promote an immunosuppressive program which sustains acquired or primary resistance to immune checkpoint blockade (ICB) is a crucial step in improving immunotherapy efficacy. Among the pathways that can affect ICB response is the interferon (IFN) pathway that may be both detrimental and beneficial. The immune sensor retinoic acid-inducible gene I (RIG-I) induces IFN activation and secretion and is activated by actin cytoskeleton disturbance. The actin cytoskeleton regulatory protein hMENA, along with its isoforms, is a key signaling hub in different solid tumors, and recently its role as a regulator of transcription of genes encoding immunomodulatory secretory proteins has been proposed. When hMENA is expressed in tumor cells with low levels of the epithelial specific hMENA11a isoform, identifies non-small cell lung cancer (NSCLC) patients with poor prognosis. Aim was to identify cancer intrinsic and extrinsic pathways regulated by hMENA11a downregulation as determinants of ICB response in NSCLC. Here, we present a potential novel mechanism of ICB resistance driven by hMENA11a downregulation. METHODS: Effects of hMENA11a downregulation were tested by RNA-Seq, ATAC-Seq, flow cytometry and biochemical assays. ICB-treated patient tumor tissues were profiled by Nanostring IO 360 Panel enriched with hMENA custom probes. OAK and POPLAR datasets were used to validate our discovery cohort. RESULTS: Transcriptomic and biochemical analyses demonstrated that the depletion of hMENA11a induces IFN pathway activation, the production of different inflammatory mediators including IFNß via RIG-I, sustains the increase of tumor PD-L1 levels and activates a paracrine loop between tumor cells and a unique macrophage subset favoring an epithelial-mesenchymal transition (EMT). Notably, when we translated our results in a clinical setting of NSCLC ICB-treated patients, transcriptomic analysis revealed that low expression of hMENA11a, high expression of IFN target genes and high macrophage score identify patients resistant to ICB therapy. CONCLUSIONS: Collectively, these data establish a new function for the actin cytoskeleton regulator hMENA11a in modulating cancer cell intrinsic type I IFN signaling and extrinsic mechanisms that promote protumoral macrophages and favor EMT. These data highlight the role of actin cytoskeleton disturbance in activating immune suppressive pathways that may be involved in resistance to ICB in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Interferon Tipo I , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Isoformas de Proteínas
8.
Front Oncol ; 13: 1145667, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274275

RESUMO

Introduction: Despite the recent approval of several therapies in the adjuvant setting of melanoma, tumor relapse still occurs in a significant number of completely resected stage III-IV patients. In this context, the use of cancer vaccines is still relevant and may increase the response to immune checkpoint inhibitors. We previously demonstrated safety, immunogenicity and preliminary evidence of clinical efficacy in stage III/IV resected melanoma patients subjected to a combination therapy based on peptide vaccination together with intermittent low-dose interferon-α2b, with or without dacarbazine preconditioning (https://www.clinicaltrialsregister.eu/ctr-search/search, identifier: 2008-008211-26). In this setting, we then focused on pre-treatment patient immune status to highlight possible factors associated with clinical outcome. Methods: Multiparametric flow cytometry was used to identify baseline immune profiles in patients' peripheral blood mononuclear cells and correlation with the patient clinical outcome. Receiver operating characteristic curve, Kaplan-Meier survival and principal component analyses were used to evaluate the predictive power of the identified markers. Results: We identified 12 different circulating T and NK cell subsets with significant (p ≤ 0.05) differential baseline levels in patients who later relapsed with respect to patients who remained free of disease. All 12 parameters showed a good prognostic accuracy (AUC>0.7, p ≤ 0.05) and 11 of them significantly predicted the relapse-free survival. Remarkably, 3 classifiers also predicted the overall survival. Focusing on immune cell subsets that can be analyzed through simple surface staining, three subsets were identified, namely regulatory T cells, CD56dimCD16- NK cells and central memory γδ T cells. Each subset showed an AUC>0.8 and principal component analysis significantly grouped relapsing and non-relapsing patients (p=0.034). These three subsets were used to calculate a combination score that was able to perfectly distinguish relapsing and non-relapsing patients (AUC=1; p=0). Noticeably, patients with a combined score ≥2 demonstrated a strong advantage in both relapse-free (p=0.002) and overall (p=0.011) survival as compared to patients with a score <2. Discussion: Predictive markers may be used to guide patient selection for personalized therapies and/or improve follow-up strategies. This study provides preliminary evidence on the identification of peripheral blood immune biomarkers potentially capable of predicting the clinical response to combined vaccine-based adjuvant therapies in melanoma.

10.
Oncoimmunology ; 12(1): 2174721, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36798427

RESUMO

The impact of radiotherapy (RT) on immune cell status in prostate cancer (PCa) is only partially determined. The aim of this study was to assess the effect of different RT strategies on peripheral B, T, and Natural killer (NK) lymphocytes at precise longitudinal time-points in PCa. 18 patients treated with stereotactic body radiation therapy (SBRT) (40 Gy/3FRX), definitive moderate-hypofractionation (62 Gy/20FRX), or post-operative conventional-fractionation RT (66-69 Gy/30FRX) were prospectively evaluated for the immune cell profile in terms of immune cell composition, differentiation stage, cytokine production and inhibitory receptor (IR) expression. The immune-monitoring of the 18 patients revealed that RT affects the balance of systemic immune cells, with the main differences observed between SBRT and conventionally fractionated RT. SBRT favorably impacts immune response in term of increased B cells, central-memory and effector-memory CD8+ T cells, along with decreased Treg cells after treatment. On the contrary, conventional fractionated RT had a long-term negative effect on the systemic immune profile, including a decrease of total lymphocyte counts accompanied by an increase of neutrophils-to-lymphocytes ratio. Total B and T cells decreased and Treg-to-CD8+ ratio increased. Functionality of T lymphocytes were not affected by any of the 3-fractionation schedules. Interestingly, SBRT significantly up-regulates the expression of V-domain immunoglobulin suppressor of T-cell activation (VISTA) in CD8+ T cells in the absence of other IRs. Our results indicate the relevance of systematic immunomonitoring during RT to identify novel immune-related target to design trials of combined radio-immunotherapy as a promising strategy in the clinical management of PCa.


Assuntos
Neoplasias da Próstata , Radiocirurgia , Humanos , Masculino , Linfócitos T CD8-Positivos , Fracionamento da Dose de Radiação , Linfócitos , Neoplasias da Próstata/radioterapia , Radiocirurgia/métodos
11.
J Exp Clin Cancer Res ; 41(1): 356, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550555

RESUMO

Profiling the T-Cell Receptor (TCR) repertoire is establishing as a potent approach to investigate autologous and treatment-induced antitumor immune response. Technical and computational breakthroughs, including high throughput next-generation sequencing (NGS) approaches and spatial transcriptomics, are providing unprecedented insight into the mechanisms underlying antitumor immunity. A precise spatiotemporal variation of T-cell repertoire, which dynamically mirrors the functional state of the evolving host-cancer interaction, allows the tracking of the T-cell populations at play, and may identify the key cells responsible for tumor eradication, the evaluation of minimal residual disease and the identification of biomarkers of response to immunotherapy. In this review we will discuss the relationship between global metrics characterizing the TCR repertoire such as T-cell clonality and diversity and the resultant functional responses. In particular, we will explore how specific TCR repertoires in cancer patients can be predictive of prognosis or response to therapy and in particular how a given TCR re-arrangement, following immunotherapy, can predict a specific clinical outcome. Finally, we will examine current improvements in terms of T-cell sequencing, discussing advantages and challenges of current methodologies.


Assuntos
Neoplasias , Linfócitos T , Humanos , Biomarcadores , Neoplasias/genética , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Imunidade
12.
Cancers (Basel) ; 14(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36358608

RESUMO

We investigated how hypofractionated radiotherapy (HFRT) and stereotactic body radiotherapy (SBRT) may impact immune cells in different type of tumors. A systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The PubMed, Embase and Cochrane databases were searched. Overall, 11 studies met the inclusion criteria and were eligible for the present analysis. Both HFRT and SBRT have different impact on lymphocyte subpopulations, confirming their immunomodulatory effect which may have a crucial role in future combined treatment with new emergent therapies such as immunotherapy. Further studies are needed to shed more light on this emerging topic to ultimately improve patient care, treatment and clinical benefits for cancer patients.

13.
Cancers (Basel) ; 14(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36230627

RESUMO

The tumor stroma, which comprises stromal cells and non-cellular elements, is a critical component of the tumor microenvironment (TME). The dynamic interactions between the tumor cells and the stroma may promote tumor progression and metastasis and dictate resistance to established cancer therapies. Therefore, novel antitumor approaches should combine anticancer and anti-stroma strategies targeting dysregulated tumor extracellular matrix (ECM). ECM remodeling is a hallmark of solid tumors, leading to extensive biochemical and biomechanical changes, affecting cell signaling and tumor tissue three-dimensional architecture. Increased deposition of fibrillar collagen is the most distinctive alteration of the tumor ECM. Consequently, several anticancer therapeutic strategies have been developed to reduce excessive tumor collagen deposition. Herein, we provide an overview of the current advances and challenges of the main approaches aiming at tumor collagen normalization, which include targeted anticancer drug delivery, promotion of degradation, modulation of structure and biosynthesis of collagen, and targeting cancer-associated fibroblasts, which are the major extracellular matrix producers.

16.
Cancers (Basel) ; 15(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36612011

RESUMO

BACKGROUND: In this prospective study, we hypothesized that magnetic resonance imaging (MRI) may represent not only the tumor but also the microenvironment, reflecting the heterogeneity and microstructural complexity of neoplasms. We investigated the correlation between both diffusion kurtosis imaging (DKI) and dynamic contrast-enhanced (DCE)-MRI with the pathological factors in oral cavity squamous cell carcinomas (OSCCs). METHODS: A total of 37 patients with newly diagnosed OSCCs underwent an MR examination on a 3T system. The diffusion coefficient (D), the kurtosis parameter (K), the transfer constants Ktrans and Kep and the volume of extravascular extracellular space ve were quantified. A histogram-based approach was proposed to investigate the associations between the imaging and the pathological factors based on the histology and immunochemistry. RESULTS: Significant differences in the DCE-MRI and DKI parameters were found in relation to the inflammatory infiltrate, tumor grading, keratinization and desmoplastic reaction. Relevant relationships emerged between tumor-infiltrating lymphocytes (TILs) and DKI, with lower D and higher K values being associated with increased TILs. CONCLUSION: Although a further investigation is needed, these findings provide a more comprehensive biological characterization of OSCCs and may contribute to a better understanding of DKI-derived parameters, whose biophysical meaning is still not well-defined.

17.
Biology (Basel) ; 10(9)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34571790

RESUMO

Chronic viral infection and cancer are closely inter-related and are both characterized by profound alteration of tissue homeostasis. The actin cytoskeleton dynamics highly participate in tissue homeostasis and act as a sensor leading to an immune-mediated anti-cancer and anti-viral response. Herein we highlight the crucial role of actin cytoskeleton dynamics in participating in a viral mimicry activation with profound effect in anti-tumor immune response. This still poorly explored field understands the cytoskeleton dynamics as a platform of complex signaling pathways which may regulate Type I IFN response in cancer. This emerging network needs to be elucidated to identify more effective anti-cancer strategies and to further advance the immuno-oncology field which has revolutionized the cancer treatment. For a progress to occur in this exciting arena we have to shed light on actin cytoskeleton related pathways and immune response. Herein we summarize the major findings, considering the double sword of the immune response and in particular the role of Type I IFN pathways in resistance to anti-cancer treatment.

18.
Biomolecules ; 11(2)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672325

RESUMO

Human tissues, to maintain their architecture and function, respond to injuries by activating intricate biochemical and physical mechanisms that regulates intercellular communication crucial in maintaining tissue homeostasis. Coordination of the communication occurs through the activity of different actin cytoskeletal regulators, physically connected to extracellular matrix through integrins, generating a platform of biochemical and biomechanical signaling that is deregulated in cancer. Among the major pathways, a controller of cellular functions is the cytokine transforming growth factor ß (TGFß), which remains a complex and central signaling network still to be interpreted and explained in cancer progression. Here, we discuss the link between actin dynamics and TGFß signaling with the aim of exploring their aberrant interaction in cancer.


Assuntos
Citoesqueleto de Actina/metabolismo , Matriz Extracelular/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Actinas/metabolismo , Animais , Fenômenos Biomecânicos , Citocinas/metabolismo , Progressão da Doença , Homeostase , Humanos , Integrinas/metabolismo , Ligantes , Neoplasias/imunologia , Neoplasias/metabolismo
19.
J Exp Clin Cancer Res ; 40(1): 102, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731188

RESUMO

Deciphering extracellular matrix (ECM) composition and architecture may represent a novel approach to identify diagnostic and therapeutic targets in cancer. Among the ECM components, fibronectin and its fibrillary assembly represent the scaffold to build up the entire ECM structure, deeply affecting its features. Herein we focus on this extraordinary protein starting from its complex structure and defining its role in cancer as prognostic and theranostic marker.


Assuntos
Fibronectinas/metabolismo , Oncologia/métodos , Neoplasias/patologia , Humanos , Prognóstico
20.
J Immunother Precis Oncol ; 4(2): 79-85, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-35663529

RESUMO

To date SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), a member of the Coronaviridae family, has infected more than 40 million people worldwide. A second wave of SARS-CoV-2 infection is aggressively surging. The clinical worsening of SARS-CoV-2 infection appears to be strictly associated with comorbidities, which can be used to establish an intrinsic patient network whose molecular profile is pivotal for identifying and successfully treating populations at risk. Herein, we focus on the direct interaction between SARS-CoV-2 and virus-associated cancers, exploring the critical role of interleukin-6 (IL-6) as a mediator of this complex cross talk. IL-6 production is enhanced in diverse viral infections ranging from human papilloma virus (HPV) to hepatitis B virus (HBV), human immunodeficiency virus (HIV), and SARS-CoV-2 infection. High systemic levels of IL-6 are associated with viral persistence and poor clinical outcomes in SARS-CoV-2-infected patients. Blockade of IL-6/IL-6R, using specific molecules, is under investigation in active clinical trials for the treatment of patients with SARS-CoV-2. Although the data are as yet inconclusive, they pave the way for selective targeting of crucial cytokine-activated aberrant signaling in SARS-CoV-2 infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...