Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 11: 599018, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055596

RESUMO

Proton therapy makes use of the favorable depth-dose distribution with its characteristic Bragg peak to spare normal tissue distal of the target volume. A steep dose gradient would be desired in lateral dimensions, too. The widespread spot scanning delivery technique is based, however, on pencil-beams with in-air spot full-widths-at-half-maximum of typically 1 cm or more. This hampers the sparing of organs-at-risk if small-scale structures adjacent to the target volume are concerned. The trimming of spot scanning fields with collimating apertures constitutes a simple measure to increase the transversal dose gradient. The current study describes the clinical implementation of brass apertures in conjunction with the pencil-beam scanning delivery mode at a horizontal, clinical treatment head based on commercial hardware and software components. Furthermore, clinical cases, which comprised craniopharyngiomas, re-irradiations and ocular tumors, were evaluated. The dosimetric benefits of 31 treatment plans using apertures were compared to the corresponding plans without aperture. Furthermore, an overview of the radiation protection aspects is given. Regarding the results, robust optimization considering range and setup uncertainties was combined with apertures. The treatment plan optimizations followed a single-field uniform dose or a restricted multi-field optimization approach. Robustness evaluation was expanded to account for possible deviations of the center of the pencil-beam delivery and the mechanical center of the aperture holder. Supplementary apertures improved the conformity index on average by 15.3%. The volume of the dose gradient surrounding the PTV (evaluated between 80 and 20% dose levels) was decreased on average by 17.6%. The mean dose of the hippocampi could be reduced on average by 2.9 GyRBE. In particular cases the apertures facilitated a sparing of an organ-at-risk, e.g. the eye lens or the brainstem. For six craniopharyngioma cases the inclusion of apertures led to a reduction of the mean dose of 1.5 GyRBE (13%) for the brain and 3.1 GyRBE (16%) for the hippocampi.

2.
J Radiol Prot ; 40(3): 848-860, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32575092

RESUMO

Collimating apertures are used in proton therapy to laterally conform treatment fields to the target volume. While this is a standard technique in passive spreading treatment heads, patient-specific apertures can supplement pencil-beam scanning (PBS) techniques to sharpen the lateral dose fall-off. A radiation protection issue is that proton-induced nuclear reactions can lead to the formation of radionuclides in the apertures. In the experiments of the current study, cylindrical, thick brass targets were irradiated with quasi-monoenergetic proton fields of 100.0 MeV and of 226.7 MeV in PBS mode. The radioactivation of these two brass samples was characterised with a low-level gamma-ray spectrometer. The activation products were scored in a Monte Carlo simulation, too, and compared with the experimental activities. For the high-energy field, 63Zn, 60Cu, and 61Cu were the most important short-lived isotopes regarding the measured specific activity. After irradiation with the 100.0 MeV field, 62Cu, 63Zn, and 60Cu had the highest activity. Regarding long-lived isotopes, which determine the storage time of the used apertures, the isotopes 57Co, 65Zn, 54Mn, 56Co had the largest contribution to the activity. The relative difference of activities between simulation and experiment was typically between 10%-20% for short-lived nuclides and were up to a factor of five larger for long-lived nuclides. Summarising experiments and simulations for both incident proton energies, 62Cu was the most important detected residual nucleus regardless if specific activity or equivalent dose is considered.


Assuntos
Cobre/química , Terapia com Prótons/métodos , Proteção Radiológica/métodos , Zinco/química , Radioisótopos de Cobre , Humanos , Método de Monte Carlo , Radiometria/instrumentação , Dosagem Radioterapêutica , Espectrometria gama , Radioisótopos de Zinco
3.
Appl Radiat Isot ; 126: 201-203, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28258950

RESUMO

The Dortmund Low Background Facility is a germanium gamma-ray spectrometry laboratory situated above ground. A massive artificial shielding, corresponding to 10m of water equivalent in combination with an active muon veto results in a background level comparable to laboratories situated underground. Due to the recent completion of the muon veto, the background is lowered by 20% compared to previously reported values (Gastrich et al., 2016). Additionally, Monte Carlo simulations of the cosmic muon induced components of the background spectrum are described.

4.
Appl Radiat Isot ; 112: 165-76, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27082973

RESUMO

The Dortmund Low Background Facility is an instrument for low-level gamma ray spectrometry with an artificial overburden of ten meters of water equivalent, an inner shielding, featuring a neutron absorber, and an active muon veto. An integral background count rate between 40keV and 2700keV of (2.528±0.004)counts/(kgmin) enables low-background gamma ray spectrometry with sensitivities in the range of some 10mBq/kg within a week of measurement time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...