Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Radiat Oncol ; 19(1): 117, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39252032

RESUMO

BACKGROUND: The interaction between breathing motion and scanning beams causes interplay effects in spot-scanning proton therapy for lung cancer, resulting in compromised treatment quality. This study investigated the effects and clinical robustness of two types of spot-scanning proton therapy with motion-mitigation techniques for locally advanced non-small cell lung cancer (NSCLC) using a new simulation tool (4DCT-based dose reconstruction). METHODS: Three-field single-field uniform dose (SFUD) and robustly optimized intensity-modulated proton therapy (IMPT) plans combined with gating and re-scanning techniques were created using a VQA treatment planning system for 15 patients with locally advanced NSCLC (70 GyRBE/35 fractions). In addition, gating windows of three or five phases around the end-of-expiration phase and two internal gross tumor volumes (iGTVs) were created, and a re-scanning number of four was used. First, the static dose (SD) was calculated using the end-of-expiration computed tomography (CT) images. The four-dimensional dynamic dose (4DDD) was then calculated using the SD plans, 4D-CT images, and the deformable image registration technique on end-of-expiration CT. The target coverage (V98%, V100%), homogeneity index (HI), and conformation number (CN) for the iGTVs and organ-at-risk (OAR) doses were calculated for the SD and 4DDD groups and statistically compared between the SD, 4DDD, SFUD, and IMPT treatment plans using paired t-test. RESULTS: In the 3- and 5-phase SFUD, statistically significant differences between the SD and 4DDD groups were observed for V100%, HI, and CN. In addition, statistically significant differences were observed for V98%, V100%, and HI in phases 3 and 5 of IMPT. The mean V98% and V100% in both 3-phase plans were within clinical limits (> 95%) when interplay effects were considered; however, V100% decreased to 89.3% and 94.0% for the 5-phase SFUD and IMPT, respectively. Regarding the significant differences in the deterioration rates of the dose volume histogram (DVH) indices, the 3-phase SFUD plans had lower V98% and CN values and higher V100% values than the IMPT plans. In the 5-phase plans, SFUD had higher deterioration rates for V100% and HI than IMPT. CONCLUSIONS: Interplay effects minimally impacted target coverage and OAR doses in SFUD and robustly optimized IMPT with 3-phase gating and re-scanning for locally advanced NSCLC. However, target coverage significantly declined with an increased gating window. Robustly optimized IMPT showed superior resilience to interplay effects, ensuring better target coverage, prescription dose adherence, and homogeneity than SFUD. TRIAL REGISTRATION: None.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Tomografia Computadorizada Quadridimensional , Neoplasias Pulmonares , Terapia com Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Neoplasias Pulmonares/radioterapia , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada Quadridimensional/métodos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Radioterapia de Intensidade Modulada/métodos , Masculino , Feminino , Órgãos em Risco/efeitos da radiação , Pessoa de Meia-Idade , Idoso , Respiração , Movimento (Física)
2.
J Appl Clin Med Phys ; : e14525, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284227

RESUMO

PURPOSE: In the modeling of beam data for proton therapy planning systems, absolute dose measurements are performed utilizing a Bragg peak chamber (BPC), which is a parallel-plate ionization chamber. The long-term stability of the BPC is crucial for ensuring accurate absolute dose measurement. The study aims to assess the long-term stability of the BPC in clinical proton pencil beam scanning delivery. METHODS: The long-term stability evaluation focused on the BPC-Type 34070 (PTW Freiburg, Germany), utilizing clinical proton scanning beams from December 2022 to November 2023. Monthly investigations were conducted to evaluate the response and cross-calibration factor of the BPC and a reference chamber, employing the spread-out Bragg peak (SOBP) field. Additionally, assessments were made regarding the BPC's response to monoenergetic beams, along with an examination of the impact of polarity and ion recombination on the BPC. RESULTS: The response and cross-calibration factor of the BPC varied up to 1.9% and 1.8%, respectively, while the response of the reference chamber remained within a 0.5% range. The BPC's response to the mono-energetic beams varied up to 2.0% across all energies, demonstrating similar variation trends in both the SOBP field and mono-energetic beams. Furthermore, the variations in polarity and ion recombination effect remained stable within a 0.4% range throughout the year. Notably, the reproducibility of the BPC remained high for each measurement conducted, whether for the SOBP field or mono-energetic beams, with a maximum deviation observed at 0.1%. CONCLUSIONS: The response and cross-calibration factor of the BPC demonstrated significant variations, with maximum changes of 1.9% and 1.8%, respectively. However, the reproducibility of the BPC remained consistently high for each measurement. It is recommended that when conducting absolute dose measurements using a BPC, its response should be compared and corrected against the reference chamber for each measurement.

3.
Biomed Phys Eng Express ; 10(4)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38744248

RESUMO

Evaluating neutron output is important to ensure proper dose delivery for patients in boron neutron capture therapy (BNCT). It requires efficient quality assurance (QA) and quality control (QC) while maintaining measurement accuracy. This study investigated the optimal measurement conditions for QA/QC of activation measurements using a high-purity germanium (HP-Ge) detector in an accelerator-based boron neutron capture therapy (AB-BNCT) system employing a lithium target. The QA/QC uncertainty of the activation measurement was evaluated based on counts, reproducibility, and standard radiation source uncertainties. Measurements in a polymethyl methacrylate (PMMA) cylindrical phantom using aluminum-manganese (Al-Mn) foils and aluminum-gold (Al-Au) foils and measurements in a water phantom using gold wire with and without cadmium cover were performed to determine the optimal measurement conditions. The QA/QC uncertainties of the activation measurements were 4.5% for Au and 4.6% for Mn. The optimum irradiation proton charge and measurement time were determined to be 36 C and 900 s for measurements in a PMMA cylindrical phantom, 7.0 C and 900 s for gold wire measurements in a water phantom, and 54 C and 900 s at 0-2.2 cm depth and 3,600 s at deeper depths for gold wire measurements with cadmium cover. Our results serve as a reference for determining measurement conditions when performing QA/QC of activation measurements using HP-Ge detectors at an AB-BNCT employing a lithium target.


Assuntos
Terapia por Captura de Nêutron de Boro , Lítio , Aceleradores de Partículas , Imagens de Fantasmas , Controle de Qualidade , Lítio/química , Terapia por Captura de Nêutron de Boro/métodos , Humanos , Aceleradores de Partículas/instrumentação , Reprodutibilidade dos Testes , Polimetil Metacrilato/química , Nêutrons , Ouro/química , Alumínio/química , Água/química , Radiometria/métodos , Radiometria/instrumentação , Dosagem Radioterapêutica
4.
Appl Radiat Isot ; 199: 110898, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37311297

RESUMO

An accelerator-based boron neutron capture therapy (AB-BNCT) system was installed at the Shonan Kamakura General Hospital (SKGH). We confirmed that a stable operation was possible for 1 h at a current of 30 mA. The evaluated thermal neutron flux was 2.8 × 109 cm-2 s-1 and in good agreement (±5%) with the calculated values. The daily variation was within ±2%. The ambient dose rate due to residual radioactivity after irradiation was approximately 5 µSv/h using a lead shutter.


Assuntos
Terapia por Captura de Nêutron de Boro , Hospitais Gerais , Terapia por Captura de Nêutron de Boro/métodos , Nêutrons
5.
In Vivo ; 37(3): 1016-1021, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37103115

RESUMO

BACKGROUND/AIM: This study aimed to confirm the relative biological effectiveness (RBE) values of the proton beam therapy (PBT) system installed in Shonan Kamakura General Hospital. MATERIALS AND METHODS: Clonogenic cell-survival assays were performed with a human salivary gland (HSG) cell line, a human tongue squamous-cell carcinoma cell line (SAS), and a human osteosarcoma cell line (MG-63). Cells were irradiated with proton beams and X-rays with different doses (1.8, 3.6, 5.5, and 7.3 Gy for proton beams, and 2, 4, 6, and 8 Gy for X-rays). Proton beam irradiation used spot-scanning methods and three different depths (at the proximal, center, and distal sides of the spread-out Bragg peak). RBE values were obtained from a comparison of the dose that resulted in a surviving fraction of 10% (D10). RESULTS: D10 of proton beams at the proximal, center, and distal sides and X-rays in HSG were 4.71, 4.71, 4.51, and 5.25 Gy, respectively; those in SAS were 5.08, 5.04, 5.01, and 5.59 Gy, respectively; and those in MG-63 were 5.36, 5.42, 5.12, and 6.06 Gy, respectively. The RBE10 values at the proximal, center, and distal sides in HSG were 1.11, 1.11, and 1.16 respectively; those in SAS were 1.10, 1.11, and 1.12, respectively; and those in MG-63 were 1.13, 1.12, and 1.18, respectively. CONCLUSION: RBE10 values of 1.10-1.18 were confirmed by in vitro experiments using the PBT system. These results are considered acceptable for clinical use in terms of therapeutic efficacy and safety.


Assuntos
Terapia com Prótons , Humanos , Prótons , Relação Dose-Resposta à Radiação , Eficiência Biológica Relativa , Hospitais Gerais , Sobrevivência Celular
6.
BMC Med Imaging ; 17(1): 30, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28472925

RESUMO

BACKGROUND: Understanding the irradiated area and dose correctly is important for the reirradiation of organs that deform after irradiation, such as the liver. We investigated the spatial registration error using the deformable image registration (DIR) software products MIM Maestro (MIM) and Velocity AI (Velocity). METHODS: Image registration of pretreatment computed tomography (CT) and posttreatment CT was performed in 24 patients with liver tumors. All the patients received proton beam therapy, and the follow-up period was 4-14 (median: 10) months. We performed DIR of the pretreatment CT and compared it with that of the posttreatment CT by calculating the dislocation of metallic markers (implanted close to the tumors). RESULTS: The fiducial registration error was comparable in both products: 0.4-32.9 (9.3 ± 9.9) mm for MIM and 0.5-38.6 (11.0 ± 10.0) mm for Velocity, and correlated with the tumor diameter for MIM (r = 0.69, P = 0.002) and for Velocity (r = 0.68, P = 0.0003). Regarding the enhancement effect, the fiducial registration error was 1.0-24.9 (7.4 ± 7.7) mm for MIM and 0.3-29.6 (8.9 ± 7.2) mm for Velocity, which is shorter than that of plain CT (P = 0.04, for both). CONCLUSIONS: The DIR performance of both MIM and Velocity is comparable with regard to the liver. The fiducial registration error of DIR depends on the tumor diameter. Furthermore, contrast-enhanced CT improves the accuracy of both MIM and Velocity. INSTITUTIONAL REVIEW BOARD APPROVAL: H28-102; July 14, 2016 approved.


Assuntos
Algoritmos , Neoplasias Hepáticas/diagnóstico por imagem , Fígado/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Software , Técnica de Subtração , Tomografia Computadorizada por Raios X/métodos , Idoso , Idoso de 80 Anos ou mais , Meios de Contraste , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reconhecimento Automatizado de Padrão/métodos , Intensificação de Imagem Radiográfica/métodos , Radiografia Abdominal/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA