Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small ; : e2405950, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39224048

RESUMO

Ultralight graphene aerogels with high electrical conductivity and superelasticity are demanded yet difficult to produce. A versatile emulsion-based approach is demonstrate to optimize multiscale structure of lightweight, elastic, and conductive graphene aerogels. By constructing Pickering emulsion using graphene oxide (GO), poly (amic acid) (PAA), and octadeyl amine (ODA), micron-level close-pore structure is realized while thermal shrinkage mismatch between GO and PAA creates numerous nanowrinkles during thermal annealing. GO nanosheets are bridged by PAA-derived carbon, enhancing the structural integrity at molecular level. These multiscale structural features facilitate rapid electron transport and efficient load transfer, conferring graphene aerogels with intriguing mechanical and electromagnetic interference (EMI) shielding properties. The emulsion-based graphene aerogel with an ultralow density of ≈3.0 mg cm-3 integrates outstanding electrical conductivity, air-caliber thermal insulation, high EMI shielding effectiveness of 75.0 dB, and 90% strain compressibility with superb fatigue resistance. Intriguingly, thanks to the gel-like rheological behavior of the emulsion, ultralight graphene scaffolds with programmable geometries are obtained by 3D printing. This work provides a general approach for the preparation of ultralight and superelastic graphene aerogels with excellent EMI shielding properties, showing broad application prospects in various fields.

2.
Brain Connect ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39291777

RESUMO

Accurate diagnosis of cerebral ischemia severity is crucial for clinical decision-making. Laser speckle contrast imaging based cerebral blood flow imaging can help assess the severity of cerebral ischemia by monitoring changes in blood flow. In this study, we simulated hyperacute ischemia in rats, isolating arterial and venous flow-related signals from cortical vasculature. Pearson correlation was used to examine the correlation between damaged vessels. Granger causality analysis was utilized to investigate causality correlation in ischemic vessels. Resting state analysis revealed a negative Pearson correlation between regional arteries and veins. Following cerebral ischemia induction, a positive artery-vein correlation emerged, which vanished after blood flow reperfusion. Granger causality analysis demonstrating enhanced causality coefficients for middle artery-vein pairs during occlusion, with a stronger left-right arterial effect than that of right-left, which persisted after reperfusion. These processing approaches amplify the understanding of cerebral ischemic images, promising potential future diagnostic advancements.

3.
Microcirculation ; 29(6-7): e12783, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36070200

RESUMO

BACKGROUND: Previous studies have used regional cerebral blood flow (CBF) hemodynamic response to measure brain activities. In this work, we use a laser speckle contrast imaging (LSCI) apparatus to sample the CBF activation in somatosensory cortex (S1BF) with repetitive whisker stimulation. Traditionally, the CBF activations were processed by depicting the change percentage above baseline; however, it is not clear how different methods influence the detection of activations. AIMS: Thus, in this work we investigate the influence of different methods to detect activations in LSCI. MATERIALS & METHODS: First, principal component analysis (PCA) was performed to denoise the CBF signal. As the signal of the first principal component (PC1) showed the highest correlation with the S1BF CBF response curve, PC1 was used in the subsequent analyses. Then, we used fast Fourier transform (FFT) to evaluate the frequency properties of the LSCI images and the activation map was generated based on the amplitude of the central frequency. Furthermore, Pearson's correlation coefficient (C-C) analysis and a general linear model (GLM) were performed to estimate the S1BF activation based on the time series of PC1. RESULTS: We found that GLM performed better in identifying activation than C-C. Additionally, the activation maps generated by FFT were similar to those obtained by GLM. Particularly, the superficial vein and arterial vessels separated the activation region as segmented activated areas, and the regions with unresolved vessels showed a common activation for whisker stimulation. DISCUSSION AND CONCLUSION: Our research analyzed the extent to which PCA can extract meaningful information from the signal and we compared the performance for detecting brain functional activation between different methods that rely on LSCI. This can be used as a reference for LSCI researchers on choosing the best method to estimate brain activation.


Assuntos
Circulação Cerebrovascular , Imagem de Contraste de Manchas a Laser , Fluxometria por Laser-Doppler/métodos , Hemodinâmica , Veias , Fluxo Sanguíneo Regional
4.
Front Hum Neurosci ; 15: 697696, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675790

RESUMO

Attention deficit hyperactivity disorder (ADHD) is one of the most widespread mental disorders and often persists from childhood to adulthood, and its symptoms vary with age. In this study, we aim to determine the disrupted dynamic functional network connectivity differences in adult, adolescent, and child ADHD using resting-state functional magnetic resonance imaging (rs-fMRI) data consisting of 35 children (8.64 ± 0.81 years), 40 adolescents (14.11 ± 1.83 years), and 39 adults (31.59 ± 10.13 years). We hypothesized that functional connectivity is time-varying and that there are within- and between-network connectivity differences among the three age groups. Nine functional networks were identified using group ICA, and three FC-states were recognized based on their dynamic functional network connectivity (dFNC) pattern. Fraction of time, mean dwell time, transition probability, degree-in, and degree-out were calculated to measure the state dynamics. Higher-order networks including the DMN, SN, and FPN, and lower-order networks comprising the SMN, VN, SC, and AUD were frequently distributed across all states and were found to show connectivity differences among the three age groups. Our findings imply abnormal dynamic interactions and dysconnectivity associated with different ADHD, and these abnormalities differ between the three ADHD age groups. Given the dFNC differences between the three groups in the current study, our work further provides new insights into the mechanism subserved by age difference in the pathophysiology of ADHD and may set the grounds for future case-control studies in the individual age groups, as well as serving as a guide in the development of treatment strategies to target these specific networks in each age group.

5.
Environ Sci Pollut Res Int ; 28(48): 68487-68497, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34273078

RESUMO

This study investigated the effectiveness of bio-augmenting aerobic cell culture to mitigate ammonia and hydrogen sulfide emission in sewage sludge composting amended with reed straw (with the weight ratio of 1:0.3-0.4). During the 20-day aerated lab-scale composting, adding 200-mL culture (56.80 NTU) reduced ammonia and hydrogen sulfide emissions by 38.00% and 54.32%, and conserved total nitrogen and sulfate by 39.42% and 70.75%, respectively. Organic matters degradation was quick started 1 day ahead. Comparing to the control, nitrate content increased 38.75% at the end of the compost. Bioaugmentation evened the distributions of bacterial communities in the thermophilic phase. The shift was mainly due to 22.97% of relative abundance of Proteobacteria depressed and 157.16% of Bacteroidetes increased, which were beneficial for nitrogen conservation and glycan breakdown, respectively. In summary, the results demonstrated that bioaugmentation addition could be an effective strategy for enhanced sludge composting.


Assuntos
Compostagem , Sulfeto de Hidrogênio , Amônia , Nitrogênio/análise , Esgotos , Solo
6.
Int J Neural Syst ; 31(4): 2150002, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33357153

RESUMO

Very fast ripples (VFRs, 500-1000[Formula: see text]Hz) are considered more specific than high-frequency oscillations (80-500[Formula: see text]Hz) as biomarkers of epileptogenic zones. Although VFRs are frequent abnormal phenomena in epileptic seizures, their functional roles remain unclear. Here, we detected the VFRs in the hippocampal network and tracked their roles during status epilepticus (SE) in rats with pilocarpine-induced temporal lobe epilepsy (TLE). All regions in the hippocampal network exhibited VFRs in the baseline, preictal, ictal and postictal states, with the ictal state containing the most VFRs. Moreover, strong phase-locking couplings existed between VFRs and slow oscillations (1-12[Formula: see text]Hz) in the ictal and postictal states for all regions. Further investigation indicated that during VFRs, the build-up of slow oscillations in the ictal state began from the temporal lobe and then spread through the whole hippocampal network via two different pathways, which might be associated with the underlying propagation of epileptiform discharges in the hippocampal network. Overall, we provide a functional description of the emergence of VFRs in the hippocampal network during SE, and we also establish that VFRs may be the physiological representation of the pathological alterations in hippocampal network activity during SE in TLE.


Assuntos
Ondas Encefálicas , Epilepsia do Lobo Temporal , Estado Epiléptico , Animais , Hipocampo , Pilocarpina/toxicidade , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA