Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37506017

RESUMO

Federated learning (FL) is an emerging distributed machine learning (ML) framework that operates under privacy and communication constraints. To mitigate the data heterogeneity underlying FL, clustered FL (CFL) was proposed to learn customized models for different client groups. However, due to the lack of effective client selection strategies, the CFL process is relatively slow, and the model performance is also limited in the presence of nonindependent and identically distributed (non-IID) client data. In this work, for the first time, we propose selecting participating clients for each cluster with active learning (AL) and call our method active client selection for CFL (ACFL). More specifically, in each ACFL round, each cluster filters out a small set of clients, which are the most informative clients according to some AL metrics e.g., uncertainty sampling, query-by-committee (QBC), loss, and aggregates only its model updates to update the cluster-specific model. We empirically evaluate our ACFL approach on the public MNIST, CIFAR-10, and LEAF synthetic datasets with class-imbalanced settings. Compared with several FL and CFL baselines, the results reveal that ACFL can dramatically speed up the learning process while requiring less client participation and significantly improving model accuracy with a relatively low communication overhead.

2.
Front Robot AI ; 10: 1086798, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37448877

RESUMO

Navigation in forest environments is a challenging and open problem in the area of field robotics. Rovers in forest environments are required to infer the traversability of a priori unknown terrains, comprising a number of different types of compliant and rigid obstacles, under varying lighting and weather conditions. The challenges are further compounded for inexpensive small-sized (portable) rovers. While such rovers may be useful for collaboratively monitoring large tracts of forests as a swarm, with low environmental impact, their small-size affords them only a low viewpoint of their proximal terrain. Moreover, their limited view may frequently be partially occluded by compliant obstacles in close proximity such as shrubs and tall grass. Perhaps, consequently, most studies on off-road navigation typically use large-sized rovers equipped with expensive exteroceptive navigation sensors. We design a low-cost navigation system tailored for small-sized forest rovers. For navigation, a light-weight convolution neural network is used to predict depth images from RGB input images from a low-viewpoint monocular camera. Subsequently, a simple coarse-grained navigation algorithm aggregates the predicted depth information to steer our mobile platform towards open traversable areas in the forest while avoiding obstacles. In this study, the steering commands output from our navigation algorithm direct an operator pushing the mobile platform. Our navigation algorithm has been extensively tested in high-fidelity forest simulations and in field trials. Using no more than a 16 × 16 pixel depth prediction image from a 32 × 32 pixel RGB image, our algorithm running on a Raspberry Pi was able to successfully navigate a total of over 750 m of real-world forest terrain comprising shrubs, dense bushes, tall grass, fallen branches, fallen tree trunks, small ditches and mounds, and standing trees, under five different weather conditions and four different times of day. Furthermore, our algorithm exhibits robustness to changes in the mobile platform's camera pitch angle, motion blur, low lighting at dusk, and high-contrast lighting conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA