Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Aust Endod J ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651624

RESUMO

Dens invaginatus (DI) is a developmental anomaly of the teeth characterised by the in-folding of the enamel into the dentin. Oehlers' Type III DI is the most serious form, in which the inherently invaginated channels communicate with periodontal and dental pulp tissue, increasing the risk of bacterial contamination. However, varying and complex anatomical features make diagnosis and treatment challenging. Conventional endodontic therapies promote healing by avoiding unnecessary interventions (e.g., surgical or other invasive treatments). Radiographic examination can reveal the structural details of such malformations. We obtained multiple procedural details for treating Type III DI based on radiographic analyses from our clinical experience. In addition, we introduce a new classification strategy for the management of Type III DI that is more applicable to treatment needs. This study aimed to discuss the anatomical features and current treatment considerations of Type III DI.

2.
FASEB J ; 38(5): e23524, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38466191

RESUMO

The pathophysiology of osteoporosis is significantly influenced by the impaired functioning of osteoblasts, which is particularly caused by oxidative stress. Nevertheless, the underlying mechanisms responsible for this phenomenon are still not well understood. The objective of this study was to elucidate the impact of fibroblast growth factor 7 (FGF7) on the behavior of osteoblasts under conditions of oxidative stress. The osteoblast-like MC3T3 cells were pretreated with recombinant FGF7 in the presence of oxidative stress induced by hydrogen peroxide (H2 O2 ). We first provided the evidence that the endogenous FGF7 was significantly increased in osteoblasts in response to the increased H2 O2 levels. Recombined FGF7 demonstrated a remarkable capacity to resist the detrimental effects of H2 O2 -induced oxidative stress, including the increase in cell apoptosis, decrease in osteoblast viability, and impairment in osteogenic differentiation capacity, on osteoblasts. Furthermore, we extensively explored the mechanism underlying these protective effects and discovered a remarkable modulation of reactive oxygen species (ROS) homeostasis in H2 O2 -treated cells following the pronounced expression of FGF7, which significantly differed from the control group. Additionally, we observed that FGF7 exerted partial preservation on both the morphology and function of mitochondria when exposed to oxidative stress conditions. Furthermore, FGF7 exhibited the ability to enhance the activation of the p38/MAPK signaling pathway while concurrently suppressing the JNK/MAPK signaling pathway in response to oxidative stress. These results underscore the promising role and underlying mechanisms of FGF7 in preserving osteoblast homeostasis in the face of oxidative stress.


Assuntos
Fator 7 de Crescimento de Fibroblastos , Osteogênese , Mitocôndrias , Osteoblastos , Estresse Oxidativo , Linhagem Celular , Animais , Camundongos
3.
BMC Genomics ; 25(1): 261, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38454321

RESUMO

Enterococcus faecalis, a formidable nosocomial and community-acquired opportunistic pathogen, can persist a wide range of extreme environments, including low pH and nutrient deficiency. Clarifying the survival mechanism of E. faecalis in low-pH conditions is the key to combating the infectious diseases caused by E. faecalis. In this study, we combined transcriptome profiling (RNA-seq) and transposon insertion sequencing (TIS) to comprehensively understand the genes that confer these features on E. faecalis. The metadata showed that genes whose products are involved in cation transportation and amino acid biosynthesis were predominantly differentially expressed under acid conditions. The products of genes such as opp1C and copY reduced the hydrion concentration in the cell, whereas those of gldA2, gnd2, ubiD, and ubiD2 mainly participated in amino metabolism, increasing matters to neutralize excess acid. These, together with the folE and hexB genes, which are involved in mismatch repair, form a network of E. faecalis genes necessary for its survival under acid conditions.


IMPORTANCE: As a serious nosocomial pathogen, Enterococcus faecalis was considered responsible for large numbers of infections. Its ability to survive under stress conditions, such as acid condition and nutrient deficiency was indispensable for its growth and infection. Therefore, understanding how E. faecalis survives acid stress is necessary for the prevention and treatment of related diseases. RNA-seq and TIS provide us a way to analyze the changes in gene expression under such conditions.


Assuntos
Enterococcus faecalis , Perfilação da Expressão Gênica , RNA-Seq , Enterococcus faecalis/genética , Genoma
4.
Mater Today Bio ; 25: 100971, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38347936

RESUMO

Critical-size defects (CSDs) of the craniofacial bones cause aesthetic and functional complications that seriously impact the quality of life. The transplantation of human dental pulp stem cells (hDPSCs) is a promising strategy for bone tissue engineering. Chirality is commonly observed in natural biomolecules, yet its effect on stem cell differentiation is seldom studied, and little is known about the underlying mechanism. In this study, supramolecular chiral hydrogels were constructed using L/d-phenylalanine (L/D-Phe) derivatives. The results of alkaline phosphatase expression analysis, alizarin red S assay, as well as quantitative real-time polymerase chain reaction and western blot analyses suggest that right-handed D-Phe hydrogel fibers significantly promoted osteogenic differentiation of hDPSCs. A rat model of calvarial defects was created to investigate the regulation of chiral nanofibers on the osteogenic differentiation of hDPSCs in vivo. The results of the animal experiment demonstrated that the D-Phe group exhibited greater and faster bone formation on hDPSCs. The results of RNA sequencing, vinculin immunofluorescence staining, a calcium fluorescence probe assay, and western blot analysis indicated that L-Phe significantly promoted adhesion of hDPSCs, while D-Phe nanofibers enhanced osteogenic differentiation of hDPSCs by facilitating calcium entry into cells and activate the MAPK pathway. These results of chirality-dependent osteogenic differentiation offer a novel therapeutic strategy for the treatment of CSDs by optimising the differentiation of hDPSCs into chiral nanofibers.

5.
Antibiotics (Basel) ; 12(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37627665

RESUMO

Dental caries is a chronic disease resulting from dysbiosis in the oral microbiome. Antagonism of commensal Streptococcus sanguinis and Streptococcus gordonii against cariogenic Streptococcus mutans is pivotal to keep the microecological balance. However, concerns are growing on antimicrobial agents in anticaries therapy, for broad spectrum antimicrobials may have a profound impact on the oral microbial community, especially on commensals. Here, we report celastrol, extracted from Traditional Chinese Medicine's Tripterygium wilfordii (TW) plant, as a promising anticaries candidate. Our results revealed that celastrol showed antibacterial and antibiofilm activity against cariogenic bacteria S. mutans while exhibiting low cytotoxicity. By using a multispecies biofilm formed by S. mutans UA159, S. sanguinis SK36, and S. gordonii DL1, we observed that even at relatively low concentrations, celastrol reduced S. mutans proportion and thereby inhibited lactic acid production as well as water-insoluble glucan formation. We found that celastrol thwarted S. mutans outgrowth through the activation of pyruvate oxidase (SpxB) and H2O2-dependent antagonism between commensal oral streptococci and S. mutans. Our data reveal new anticaries properties of celastrol that enhance oral streptococcal antagonism, which thwarts S. mutans outgrowth, indicating its potential to maintain oral microbial balance for prospective anticaries therapy.

6.
Front Cell Infect Microbiol ; 13: 1157368, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180439

RESUMO

Metabolic dysfunction-associated fatty liver disease (MAFLD) is a phenotype of liver diseases associated with metabolic syndrome. The pathogenesis MAFLD remains unclear. The liver maintains is located near the intestine and is physiologically interdependent with the intestine via metabolic exchange and microbial transmission, underpinning the recently proposed "oral-gut-liver axis" concept. However, little is known about the roles of commensal fungi in the disease development. This study aimed to characterize the alterations of oral and gut mycobiota and their roles in MAFLD. Twenty-one MAFLD participants and 20 healthy controls were enrolled. Metagenomics analyses of saliva, supragingival plaques, and feces revealed significant alterations in the gut fungal composition of MAFLD patients. Although no statistical difference was evident in the oral mycobiome diversity within MAFLD and healthy group, significantly decreased diversities were observed in fecal samples of MAFLD patients. The relative abundance of one salivary species, five supragingival species, and seven fecal species was significantly altered in MAFLD patients. Twenty-two salivary, 23 supragingival, and 22 fecal species were associated with clinical parameters. Concerning the different functions of fungal species, pathways involved in metabolic pathways, biosynthesis of secondary metabolites, microbial metabolism in diverse environments, and carbon metabolism were abundant both in the oral and gut mycobiomes. Moreover, different fungal contributions in core functions were observed between MAFLD patients and the healthy controls, especially in the supragingival plaque and fecal samples. Finally, correlation analysis between oral/gut mycobiome and clinical parameters identified correlations of certain fungal species in both oral and gut niches. Particularly, Mucor ambiguus, which was abundant both in saliva and feces, was positively correlated with body mass index, total cholesterol, low-density lipoprotein, alanine aminotransferase, and aspartate aminotransferase, providing evidence of a possible "oral-gut-liver" axis. The findings illustrate the potential correlation between core mycobiome and the development of MAFLD and could propose potential therapeutic strategies.


Assuntos
Microbioma Gastrointestinal , Micobioma , Hepatopatia Gordurosa não Alcoólica , Humanos , Fungos/genética , Fezes/microbiologia , Saliva
7.
Front Cell Infect Microbiol ; 13: 1131255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36864882

RESUMO

Introduction: Metabolic-associated fatty liver disease (MAFLD) is the most common chronic liver disease related to metabolic syndrome. However, ecological shifts in the saliva microbiome in patients with MAFLD remain unknown. This study aimed to investigate the changes to the salivary microbial community in patients with MAFLD and explore the potential function of microbiota. Methods: Salivary microbiomes from ten MAFLD patients and ten healthy participants were analyzed by 16S rRNA amplicon sequencing and bioinformatics analysis. Body composition, plasma enzymes, hormones, and blood lipid profiles were assessed with physical examinations and laboratory tests. Results: The salivary microbiome of MAFLD patients was characterized by increased α-diversity and distinct ß-diversity clustering compared with control subjects. Linear discriminant analysis effect size analysis showed a total of 44 taxa significantly differed between the two groups. Genera Neisseria, Filifactor, and Capnocytophaga were identified as differentially enriched genera for comparison of the two groups. Co-occurrence networks suggested that the salivary microbiota from MAFLD patients exhibited more intricate and robust interrelationships. The diagnostic model based on the salivary microbiome achieved a good diagnostic power with an area under the curve of 0.82(95% CI: 0.61-1). Redundancy analysis and spearman correlation analysis revealed that clinical variables related to insulin resistance and obesity were strongly associated with the microbial community. Metagenomic predictions based on Phylogenetic Investigation of Communities by Reconstruction of Unobserved States revealed that pathways related to metabolism were more prevalent in the two groups. Conclusions: Patients with MAFLD manifested ecological shifts in the salivary microbiome, and the saliva microbiome-based diagnostic model provides a promising approach for auxiliary MAFLD diagnosis.


Assuntos
Microbiota , Hepatopatia Gordurosa não Alcoólica , Humanos , Metagenoma , Hepatopatia Gordurosa não Alcoólica/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Saliva/microbiologia
8.
BMJ Open ; 13(3): e067065, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944468

RESUMO

OBJECTIVES: COVID-19, which is caused by SARS-CoV-2, is a severe threat to human health and the economy globally. This study aimed to investigate the prevalence of taste and/or smell dysfunction and associated risk factors in mild and asymptomatic patients with Omicron infection in Shanghai, China.DesignThis was a questionnaire-based cross-sectional study. SETTING: COVID-19 patients at the makeshift hospital in the Shanghai World Expo Exhibition and Convention Centre were recruited from March to April 2022. PARTICIPANTS: In total, 686 COVID-19-infected patients who were defined as mild or asymptomatic cases according to the diagnostic criteria of New Coronavirus Pneumonia Prevention and Control Programme ninth edition (National Health Commission of China, 2022) were enrolled. MEASURES: Data to investigate taste and smell loss and to characterise other symptoms were collected by the modified Chemotherapy-induced Taste Alteration Scale and Sino-Nasal Outcome Test-22 questionnaires. The risk factors for the severity of taste/smell dysfunction were analysed by binary logistic regression models. RESULTS: 379 males (379/686, 55.2%) and 307 females (307/686, 44.8%) completed the questionnaires to record recent changes in taste and smell ability. A total of 302 patients (44%) had chemosensory dysfunction with Omicron infection, of which 22.7% (156/686) suffered from both taste and smell dysfunction. In addition, cough (60.2%), expectoration (40.5%), fever (33.2%) and sore throat (32.5%) were common symptoms during Omicron infection. The quality-of-life-related indicators were negatively associated with participants' self-reported taste and smell dysfunction. CONCLUSIONS: The prevalence of taste or/and smell dysfunction in patients with Omicron infections was 44%. Individuals with chemosensory dysfunction had significantly higher rates of various upper respiratory influenza-like symptoms, xerostomia and bad breath. Moreover, smell dysfunction was a risk factor for the prevalence of taste dysfunction in patients with Omicron infection. TRIAL REGISTRATION NUMBER: ChiCTR 2200059097.


Assuntos
COVID-19 , Transtornos do Olfato , Masculino , Feminino , Humanos , COVID-19/complicações , COVID-19/epidemiologia , Estudos Transversais , SARS-CoV-2 , Paladar , Prevalência , China/epidemiologia , Transtornos do Olfato/epidemiologia , Transtornos do Olfato/etiologia , Distúrbios do Paladar/epidemiologia , Distúrbios do Paladar/etiologia , Distúrbios do Paladar/diagnóstico , Inquéritos e Questionários
9.
Transl Res ; 255: 14-25, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36347492

RESUMO

Tyrosine kinase inhibitor (TKI) is a standard treatment for patients with NSCLC harboring constitutively active epidermal growth factor receptor (EGFR) mutations. However, most rare EGFR mutations lack treatment regimens except for the well-studied ones. We constructed two EGFR variant libraries containing substitutions, deletions, or insertions using the saturation mutagenesis method. All the variants were located in the EGFR mutation hotspot (exons 18-21). The sensitivity of these variants to afatinib, erlotinib, gefitinib, icotinib, and osimertinib was systematically studied by determining their enrichment in massively parallel cytotoxicity assays using an endogenous EGFR-depleted cell line. A total of 3914 and 70,475 variants were detected in the constructed EGFR Substitution-Deletion (Sub-Del) and exon 20 Insertion (Ins) libraries. Of the 3914 Sub-Del variants, 221 proliferated fast in the control assay and were sensitive to EGFR-TKIs. For the 70,475 Ins variants, insertions at amino acid positions 770-774 were highly enriched in all 5 TKI cytotoxicity assays. Moreover, the top 5% of the enriched insertion variants included a glycine or serine insertion at high frequency. We present a comprehensive reference for the sensitivity of EGFR variants to five commonly used TKIs. The approach used here should be applicable to other genes and targeted drugs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Mutação/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Inibidores de Proteínas Quinases/farmacologia , Receptores ErbB/genética , Receptores ErbB/metabolismo
10.
Front Cell Infect Microbiol ; 12: 937725, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105149

RESUMO

As a keystone periodontal pathogen, Porphyromonas gingivalis (P. gingivalis) was suggested to be involved in the progression of systemic diseases by altering the intestinal microecology. However, studies concerning gut microbiome have focused entirely on the bacterial component, while the fungal community (gut mycobiome) has been overlooked. In this study, we aimed to characterize the alteration of gut mycobiome profile with P. gingivalis administration using mice fecal samples. Metagenomic analysis showed a distinct composition pattern of mycobiome and significant difference of beta diversity between control and the P. gingivalis group. Some fungal species were differentially characterized with P. gingivalis administration, among which Pyricularia pennisetigena and Alternaria alternata showed positive correlation with P. gingivalis. KEGG functional analyses revealed that three pathways, namely, "pentose and glucuronate interconversions", "metabolic pathways", and "two-component system", were statistically enriched with P. gingivalis administration. Moreover, the alteration of gut mycobiome was also closely related with serum metabolites, especially lipid and tryptophan metabolic pathways. Taken together, this study demonstrated the alteration of fungal composition and function with P. gingivalis administration for the first time, and investigated the fungi-bacterial interaction and fungi-metabolite interaction preliminarily, providing a whole insight into gut mycobiome remodeling with oral pathobiont through multi-omics analyses.


Assuntos
Microbioma Gastrointestinal , Micobioma , Animais , Fezes/microbiologia , Metagenômica , Camundongos , Porphyromonas gingivalis
11.
Adv Exp Med Biol ; 1377: 13-26, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35575918

RESUMO

Cholesterol ester transfer protein (CETP) is important clinically and is one of the major targets in cardiovascular disease studies. With high conformational flexibility, its tunnel structure allows unforced movement of high-density lipoproteins (HDLs), VLDLs, and LDLs. Research in reverse cholesterol transports (RCT) reveals that the regulation of CETP activity can change the concentration of cholesteryl esters (CE) in HDLs, VLDLs, and LDLs. These molecular insights demonstrate the mechanisms of CETP activities and manifest the correlation between CETP and HDL. However, animal and cell experiments focused on CETP give controversial results. Inhibiting CETP is found to be beneficial to anti-atherosclerosis in terms of increasing plasma HDL-C, while it is also claimed that CETP weakens atherosclerosis formation by promoting RCT. Currently, the CETP-related drugs are still immature. Research on CETP inhibitors is targeted at improving efficacy and minimizing adverse reactions. As for CETP agonists, research has proved that they also can be used to resist atherosclerosis.


Assuntos
Aterosclerose , Proteínas de Transferência de Ésteres de Colesterol , Animais , Aterosclerose/tratamento farmacológico , Transporte Biológico , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Ésteres do Colesterol/metabolismo , HDL-Colesterol/metabolismo , Lipoproteínas HDL/metabolismo
12.
Arch Oral Biol ; 135: 105366, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35144060

RESUMO

OBJECTIVE: Odontogenic differentiation of dental pulp stem cells (DPSCs) is highly controlled by the activation of several transcription factors. The zinc finger and BTB domain-containing 16 (ZBTB16) gene encodes a BTB/POZ domain and zinc finger containing transcription factors and is involved in several biological processes, but little is known about its role in odontogenic differentiation. The main goal of the current study was to determine the role of ZBTB16 in odontogenic differentiation of DPSCs. DESIGN: ZBTB16, runt-related transcription factor 2 (RUNX2), and osterix (OSX) were silenced via small-hairpin RNA (shRNA) lentivirus. The odontoblastic differentiation of DPSCs was detected by alkaline phosphatase (ALP) staining, activity measurement, and alizarin red S staining in vitro. The gene and protein expression levels were assessed by RT-qPCR and western blotting. Further, an ectopic implantation experiment was performed to explore the role of ZBTB16 in mineralization regulation in vivo followed by histological examination. RESULTS: The silencing of ZBTB16 attenuated ALP activity and mineralized nodules formation by DPSCs. In addition, knockdown of ZBTB16 impaired the expression of markers involved in odontogenic differentiation, including dentin sialophosphoprotein, dentin matrix acidic phosphoprotein 1, and collagen 1 in vitro and vivo. Silencing the OSX gene suppressed ZBTB16 expression and, in turn, OSX expression decreased after ZBTB16 knockdown. However, shRUNX2 did not suppress ZBTB16 expression and shZBTB16 did not affect RUNX2 expression. CONCLUSIONS: ZBTB16 may play an important role in modulating the odontoblastic differentiation of DPSCs and act as a regulator of OSX in a possible feed-back cycle independent of RUNX2.


Assuntos
Polpa Dentária , Odontogênese , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Odontogênese/genética , Reação em Cadeia da Polimerase em Tempo Real , Células-Tronco
13.
Exp Ther Med ; 23(1): 55, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34917181

RESUMO

Regenerative endodontics, as an alternative approach, aims to regenerate dental pulp-like tissues and is garnering the attention of clinical dentists. This is due to its reported biological benefits for dental therapeutics. Stem cells and their microenvironment serve an important role in the process of pulp regeneration. Regulation of the stem cell microenvironment and the directed differentiation of stem cells is becoming a topic of intensive research. Salidroside (SAL) is extracted from the root of Rhodiola rosea and it has been reported that SAL exerts antiaging, neuroprotective, hepatoprotective, cardioprotective and anticancer effects. However, the ability of SAL to regulate the osteo/odontogenic differentiation of hDPSCs remains to be elucidated. In the present study, the effect of SAL on the proliferation and osteogenic/odontogenic differentiation of human dental pulp stem cells (hDPSCs) was investigated. This was achieved by performing CCK-8 ARS staining assay, reverse transcription-quantitative PCR to detect mRNA of ALP, OSX, RUNX2, OCN, DSPP and BSP, western blotting to detect the protein of MAPK, Smad1/5/8, OSX, RUNX2, BSP and GAPDH and immunofluorescence assays to detect DSPP. The results indicated that SAL promoted the cell viability and the osteogenic/odontogenic differentiation of hDPSCs whilst increasing the expression of genes associated with osteogenic/odontogenic differentiation by ARS staining assay. In addition, SAL promoted osteogenic and odontogenic differentiation by activating the phosphorylation of Smad1/5/8. Collectively, these findings suggest that SAL promoted the osteogenic and odontogenic differentiation of hDPSCs activating the BMP signaling pathway.

14.
Front Psychiatry ; 12: 717093, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899413

RESUMO

Objective: The objective of the study was to evaluate the relationship between frequency of exposure to general anesthesia before the age of 3 and subsequent risk of diagnosis for attention-deficit hyperactivity disorder (ADHD). Method: We searched PubMed, Embase, Web of Science, and Cochrane Library database for eligible inclusion in the meta-analysis. The indicated outcomes were extracted from the included studies, and the combined effects were calculated using the RevMan software 5.3. Results: Compared with no exposure to general anesthesia, single exposure to general anesthesia did not increase the risk of ADHD for children before the age of 3 [hazard ratio (HR): 1.14, 95%; confidence intervals (CI): 0.97-1.35; p = 0.11; I 2 = 0%], while multiple exposures to general anesthesia did increase the risk of ADHD (HR: 1.83; 95% CIs: 1.00-3.32; p = 0.05; I 2 = 81%). Conclusion: Multiple, but not single, exposures to general anesthesia in children before age of 3 increased the risk of ADHD.

15.
Arch Oral Biol ; 127: 105137, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33965851

RESUMO

OBJECTIVE: The LuxS/AI-2 quorum sensing (QS) system has critical roles in Streptococcus mutans cariogenicity. Whereas the molecular and cellular mechanisms of the LuxS/AI-2 QS system are not thoroughly understood. Given that LuxS has roles in QS and methyl cycle, its mutation can cause QS deficiency and methyl cycle disruption. The aim of this study was to investigate effects of the LuxS/AI-2 QS system on gene expression in Streptococcus mutans when methyl cycle was recovered with exogenous sahH gene. METHODS: Our previous study introduced the exogenous sahH gene from Pseudomonas aeruginosa into an S. mutans luxS-null strain to restore the disrupted methyl cycle, and this produced the solely the LuxS/AI-2 QS system deficient strain. Here, we analyzed the transcriptomics of this strain to get insights into the molecular mechanisms of the LuxS/AI-2 QS system applying RNA-seq. RESULTS: With recovery of methyl cycle, 84 genes didn't change in expression trends in S. mutans luxS-null strain. These genes mainly encode the ABC transporters, sugar transporter EII and enzymes of carbohydrate metabolism, and are rich in the Phosphotransferase system, Fructose and mannose metabolism, Amino sugar and nucleotide sugar metabolism, Galactose metabolism, Glycolysis/Gluconeogenesis, RNA degradation, Lysine biosynthesis, and Glycine, serine and threonine metabolism. CONCLUSIONS: The LuxS/AI-2 QS system may mainly affect ABC transporters and carbohydrate transport, transformation and metabolism via EII subunits and enzymes to influence virulence-associated traits without effects of methyl cycle inStreptococcus mutans.


Assuntos
Percepção de Quorum , Streptococcus mutans , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Liases de Carbono-Enxofre/genética , Regulação Bacteriana da Expressão Gênica , Homosserina/genética , Homosserina/metabolismo , Lactonas , Percepção de Quorum/genética , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Transcriptoma
16.
Front Nutr ; 7: 50, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435650

RESUMO

Objectives: The aim of this study was to evaluate a total fasting regimen assisted by a novel prebiotic, Flexible Abrosia (FA), in more than 7 days of continual dietary deprivation (7D-CDD). Our analysis included basic physical examinations, bioelectrical impedance analysis, and clinical lab and ELISA analysis in normal volunteers. Methods: Seven healthy subjects with normal body weight participated in 7D-CDD with the assistance of a specially designed probiotic. Individuals were assigned to take FA (113.4 KJ/10 g) at each mealtime to avoid possible injuries to intestinal flora and smooth the hunger sensation. During 7D-CDD, the subjects were advised to avoid any food intake, especially carbohydrates, except for drinking plentiful amounts of water. The examination samples were collected before CDD as self-control, at 7 days fasting, and after 7~14 days of refeeding. Three subjects were also tested after 6-m refeeding. Results: The FA-CDD regimen significantly decreased suffering from starvation, with tolerable hunger sensations during the treatment. With the addition of daily mineral electrolytes, the subjects not only passed through the entire 7D-CDD regimen but also succeed in 12~13 days total fasting in two subjects. There was a significant reduction in blood glucose, insulin, and high-density lipoprotein levels during fasting, and the blood concentrations of uric acid (UA), alanine aminotransferase (ALT), and creatine kinase (CK) were increased. However, after more than 2 months of refeeding, the disease markers ALT, GOT, and CK either remained stable or were slightly downregulated compared to their initial D0 control level. Conclusion: Our experiment has supplied the first positive evidence that, with the assistance of a daily nutritional supply of around 100 kcal total calories to their intestinal flora, human subjects were able to tolerate hunger sensations. We have found that, although 7D-CDD induced increases in UA, CK, and transferases during fasting, refeeding led the markers to become either down-regulated or unchanged compared to their initial levels. This phenomenon was further confirmed in longer-term (6 m) recovery. Our results failed to support the hypothesis that fasting induced liver damage, since ALT, GOT, and CK remained low after longer-term refeeding. Our findings indicate that the 7D-CDD regimen might be practical and that it might be valuable to design larger clinical fasting trials for improvement of health strategy-targeting in metabolic disorders.

17.
Front Pharmacol ; 11: 574607, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519440

RESUMO

Βeta-cyclodextrin (ß-CD) with a hydrophobic cavity enables the formation of inclusion complexes with organic molecules. The formation of host-guest complexes makes the application of ß-CD popular in many fields, but their interaction with organisms is poorly understood. In the present study, the effect of ß-CD on gut microbiota (16S rRNA gene sequencing), serum metabolites (gas chromatography-mass spectrometry platform), and their correlation (Pearson correlation analysis) was investigated after 14 days repeated oral exposure in mice. ß-CD did not significantly affect the α-diversity indexes, including Richness, Chao1, Shannon and Simpson indexes, but disturbed the structure of the gut bacteria according to the result of principal component analysis (PCA). After taxonomic assignment, 1 in 27 phyla, 2 in 48 classes, 3 in 107 orders, 6 in 192 families, and 8 in 332 genera were significantly different between control and ß-CD treated groups. The serum metabolites were significantly changed after ß-CD treatment according to the result of unsupervized PCA and supervised partial least squares-discriminant analysis (PLS-DA). A total of 112 differential metabolites (89 downregulated and 23 upregulated) were identified based on the VIP >1 from orthogonal PLS-DA and p <0.05 from Student's t-test. The metabolic pathways, including ABC transporters, pyrimidine metabolism, purine metabolism, glucagon signaling pathway, insulin signaling pathway, and glycolysis/gluconeogenesis, were enriched by KEGG pathway analysis. Our study provides a general observation of gut microbiota, serum metabolites and their correlation after exposure to ß-CD in mice, which will be helpful for future research and application of ß-CD.

18.
Shanghai Kou Qiang Yi Xue ; 29(5): 462-465, 2020 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-33543209

RESUMO

PURPOSE: To investigate the effect of vitexin (VTX) on the expression of inflammatory cytokines in human dental pulp stem cells(hDPSCs) induced by lipopolysaccharide(LPS), and to explore the underlying mechanism. METHODS: hDPSCs were isolated and cultured, and CCK-8 method was used to detect the effect of VTX on proliferation of hDPSCs. hDPSCs were randomly divided into 4 groups: blank group (without LPS and VTX),LPS group (2 µg/mL LPS),2 µg/mL LPS + 25 µmol/L VTX,2 µg/mL LPS + 50 µmol/L VTX. The cells of all groups were cultured for 48 h. The gene levels of IL-1ß, IL-6 and IL-8 in hDPSCs were detected by real time qPCR(RT-qPCR). The change of COX-2 and MAPKs signaling pathways were detected by Western blot. SPSS 16.0 software package was used for statistical analysis. RESULTS: When the VTX concentration was less than 200 µmol/L, the cell viability was not affected(P>0.05). VTX at 25 and 50 µmol/L significantly reduced LPS-induced expression of IL-1ß, IL-6 and IL-8 at gene levels and COX-2 at protein level (P<0.05). CONCLUSIONS: VTX significantly inhibited the activation of ERK and p38 signaling pathway. VTX can reduce LPS-induced inflammatory cytokine expression in hDPSCs via restraining the activation of ERK and p38 signaling pathway.


Assuntos
Citocinas , Lipopolissacarídeos , Apigenina , Polpa Dentária , Humanos , Lipopolissacarídeos/farmacologia , Células-Tronco
20.
Environ Pollut ; 257: 113618, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31784274

RESUMO

Pesticides pollution has caused serious environmental problems in recent years, and mounting evidence has shown that more and more insecticides have serious risk in human health. Emamectin Benzoate formally regarded as a highly safety insecticide based on its exclusive targets, but the cytotoxicity to human lung was ignored for a long time. In the present study, bioassay experiments were used to assess the toxicity of the Emamectin Benzoatein on human non-target cells including cell viability assay, DNA damage assay, flow cytometer assay and western blotting assay. The results indicated that Emamectin Benzoatecan cause the inhibition of the proliferation, cytochrome c release, activation of caspase-3/9 and increase Bax/Bcl-2 ratio, which means it induced the cytotoxicity on 16HBE cells associated with the mitochondrial apoptosis. Besides, the DNA damge caused by the Emamectin Benzoate suggest it has a potential genotoxic effect on human lung cells.


Assuntos
Inseticidas/toxicidade , Ivermectina/análogos & derivados , Testes de Toxicidade , Brônquios , Humanos , Ivermectina/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...