Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38083214

RESUMO

Spasticity is a motor disorder with high prevalence and critical consequences following a stroke. Reliable and sensitive measurements are important to guide the selection and evaluation of treatment strategies. Technology-assisted methods, such as the surface electromyography (sEMG) technique, have been developed to measure spasticity as sensitive and accurate alternatives to commonly used clinical scales. However, sEMG amplitude based measures may confound spasticity-induced muscle activities with other types of muscle contractions. This study thus introduces the idea of using sEMG frequency information to detect spasticity as a potential solution to overcome the limitations of existing sEMG based measures. The preliminary results of three patients demonstrate the possibility and future research directions for this approach.


Assuntos
Articulação do Cotovelo , Acidente Vascular Cerebral , Humanos , Eletromiografia/métodos , Cotovelo , Espasticidade Muscular/diagnóstico , Espasticidade Muscular/etiologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico
2.
Artigo em Inglês | MEDLINE | ID: mdl-38083678

RESUMO

Spasticity is characterized by a velocity-dependent increase in the tonic stretch reflex. Evidence suggests that spasticity originates from hyperactivity in the descending tract or reflex loop. To pinpoint the source of hyperactivity, however, is difficult due to lack of human data in-vivo. Thus, we implemented a neuromorphic model to revive the neurodynamics with spiking neuronal activity. Two types of input were modeled: (1) the additive condition (ADD) to apply tonic synaptic inputs directly into the reflex loop; (2) the multiplicative (MUL) condition to adjust the loop gains within the reflex loop. Results show that both conditions produced antagonist EMG responses resembling patient data. The timing of spasticity is more sensitive to the ADD condition, whereas the amplitude of spastic EMG is more sensitive to the MUL condition. In conclusion, our model shows that both additive and multiplicative hyperactivities suffice to elicit velocity-dependent spastic electromyographic signals (EMG), but with different sensitivities. This simulation study suggests that spasticity caused by different origins may be discernable by the progression of severity, which may help individualized goalsetting and parameter-selection in rehabilitation.Clinical Relevance-Potential application of neuromorphic modeling on spasticity includes selection of parameters for therapeutic plans, such as movement range, repetition, and load.


Assuntos
Neurônios Motores , Espasticidade Muscular , Humanos , Neurônios Motores/fisiologia , Movimento/fisiologia , Reflexo de Estiramento/fisiologia
3.
Cyborg Bionic Syst ; 4: 0033, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275578

RESUMO

In neurorehabilitation, motor performances may improve if patients could accomplish the training by overcoming mechanical loads. When the load inertia is increased, it has been found to trigger linear responses in motor-related cortices. The cortical responses, however, are unclear whether they also correlate to changes in muscular patterns. Therefore, it remains difficult to justify the magnitude of load during rehabilitation because of the gap between cortical and muscular activation. Here, we test the hypothesis that increases in load inertia may alter the muscle synergies, and the change in synergy may correlate with cortical activation. Twelve healthy subjects participated in the study. Each subject lifted dumbbells (either 0, 3, or 15 pounds) from the resting position to the armpit repetitively at 1 Hz. Surface electromyographic signals were collected from 8 muscles around the shoulder and the elbow, and hemodynamic signals were collected using functional near-infrared spectroscopy from motor-related regions Brodmann Area 4 (BA4) and BA6. Results showed that, given higher inertia, the synergy vectors differed farther from the baseline. Moreover, synergy similarity on the vector decreased linearly with cortical responses in BA4 and BA6, which associated with increases in inertia. Despite studies in literature that movements with similar kinematics tend not to differ in synergy vectors, we show a different possibility that the synergy vectors may deviate from a baseline. At least 2 consequences of adding inertia have been identified: to decrease synergy similarity and to increase motor cortical activity. The dual effects potentially provide a new benchmark for therapeutic goal setting.

4.
Front Neurosci ; 17: 1135687, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895418

RESUMO

Objective: Sensory feedback of upper-limb prostheses is widely desired and studied. As important components of proprioception, position, and movement feedback help users to control prostheses better. Among various feedback methods, electrotactile stimulation is a potential method for coding proprioceptive information of a prosthesis. This study was motivated by the need for proprioception information for a prosthetic wrist. The flexion-extension (FE) position and movement information of the prosthetic wrist are transmitted back to the human body through multichannel electrotactile stimulation. Approach: We developed an electrotactile scheme to encode the FE position and movement of the prosthetic wrist and designed an integrated experimental platform. A preliminary experiment on the sensory threshold and discomfort threshold was performed. Then, two proprioceptive feedback experiments were performed: a position sense experiment (Exp 1) and a movement sense experiment (Exp 2). Each experiment included a learning session and a test session. The success rate (SR) and discrimination reaction time (DRT) were analyzed to evaluate the recognition effect. The acceptance of the electrotactile scheme was evaluated by a questionnaire. Main results: Our results showed that the average position SRs of five able-bodied subjects, amputee 1, and amputee 2 were 83.78, 97.78, and 84.44%, respectively. The average movement SR, and the direction and range SR of wrist movement in five able-bodied subjects were 76.25, 96.67%, respectively. Amputee 1 and amputee 2 had movement SRs of 87.78 and 90.00% and direction and range SRs of 64.58 and 77.08%, respectively. The average DRT of five able-bodied subjects was less than 1.5 s and that of amputees was less than 3.5 s. Conclusion: The results indicate that after a short period of learning, the subjects can sense the position and movement of wrist FE. The proposed substitutive scheme has the potential for amputees to sense a prosthetic wrist, thus enhancing the human-machine interaction.

5.
Brain Sci ; 12(11)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36421862

RESUMO

Activities of daily living consist of accurate, coordinated movements, which require the upper limbs to constantly interact with environmental loads. The magnitude of the load was shown to affect kinematic outcomes in healthy subjects. Moreover, the increase in load facilitates the recovery of motor function in patients with neurological disorders. Although Brodmann Areas 4 and 6 were found to be active during loaded movements, it remains unclear whether stronger activation can be triggered simply by increasing the load magnitude. If such a linear relationship exists, it may provide a basis for the closed-loop adjustment of treatment plans in neurorehabilitation. Fourteen healthy participants were instructed to lift their hands to their armpits. The movements were grouped in blocks of 25 s. Each block was assigned a magnitude of inertial loads, either 0 pounds (bare hand), 3 pounds, or 15 pounds. Hemodynamic fNIRS signals were recorded throughout the experiment. Both channel-wise and ROI-wise analyses found significant activations against all three magnitudes of inertia. The generalized linear model revealed significant increases in the beta coefficient of 0.001673/pound in BA4 and 0.001338/pound in BA6. The linear trend was stronger in BA6 (conditional r2 = 0.9218) than in BA4 (conditional r2 = 0.8323).

6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4159-4162, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086384

RESUMO

Spasticity is a motor disorder characterised by a velocity-dependent increase in muscle tone, which is critical in neurorehabilitation given its high prevalence and potential negative influence among the post-stroke population. Accurate measurement of spasticity is important as it guides the strategy of spasticity treatment and evaluates the effectiveness of spasticity management. However, spasticity is commonly measured using clinical scales which may lack objectivity and reliability. Although many technology-assisted measures have been developed, showing their potential as accurate and reliable alternatives to standard clinical scales, they have not been widely adopted in clinical practice due to their low usability and feasibility. This paper thus introduces an easy-to-use robotic based measure of elbow spasticity and its evaluation protocol. Preliminary results collected with one post-stroke patient and one healthy control subject are presented and demonstrate the feasibility of the approach.


Assuntos
Robótica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Cotovelo , Humanos , Espasticidade Muscular/diagnóstico , Espasticidade Muscular/etiologia , Reprodutibilidade dos Testes , Robótica/métodos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico , Reabilitação do Acidente Vascular Cerebral/métodos , Extremidade Superior
7.
Neurosci Lett ; 780: 136621, 2022 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-35395324

RESUMO

A previous study indicated that synergy-based functional electrical stimulation (FES) may improve instantaneous upper-limb motor performance for stroke survivors. However, it remains unclear whether the improvements will sustain over time to achieve functional gains associated with a task-oriented training (TOT). This pilot study was designed to investigate whether there is any promising sign of functional benefits. A TOT protocol with repeated forward and lateral reaching movements assisted by synergy-based FES was conducted in 16 patients (9 FES, 7 Sham) with post-stroke hemiparesis. FES stimuli were applied to 7 upper-extremity muscles of elbow and shoulder during patient movements. Envelopes of stimuli were individualized by re-composing the muscle synergies extracted from a healthy subject. After a five-day training for one hour each day, synergy-based FES induced higher increases in Fugl-Meyer scores (6.67 ± 5.20) than did the Sham (2.00 ± 2.38, p < 0.05). Peak velocity of forward reaching movements increased with a slope 73% steeper in FES group than Sham. In lateral reaching movements, the change in synergy similarity correlated with the change in elbow flexion for the FES group, but not the Sham group. Our results indicate that synergy-based FES therapy induced clinically traceable signs of improvements in poststroke motor performance. The muscle activation in patients also showed promising sign of alteration by FES. Results suggest that a larger scale clinical trial of synergy-based FES may be feasible towards an individualized therapeutic regimen.


Assuntos
Terapia por Estimulação Elétrica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Elétrica , Terapia por Estimulação Elétrica/métodos , Humanos , Projetos Piloto , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/complicações , Reabilitação do Acidente Vascular Cerebral/métodos , Extremidade Superior
8.
IEEE Open J Eng Med Biol ; 3: 150-161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712316

RESUMO

Objective: Human neuromuscular reflex control provides a biological model for a compliant hand prosthesis. Here we present a computational approach to understanding the emerging human-like compliance, force and position control, and stiffness adaptation in a prosthetic hand with a replica of human neuromuscular reflex. Methods: A virtual twin of prosthetic hand was constructed in the MuJoCo environment with a tendon-driven anthropomorphic hand structure. Biorealistic mathematic models of muscle, spindle, spiking-neurons and monosynaptic reflex were implemented in neuromorphic chips to drive the virtual hand for real-time control. Results: Simulation showed that the virtual hand acquired human-like ability to control fingertip position, force and stiffness for grasp, as well as the capacity to interact with soft objects by adaptively adjusting hand stiffness. Conclusion: The biorealistic neuromorphic reflex model restores human-like neuromuscular properties for hand prosthesis to interact with soft objects.

9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5856-5859, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892451

RESUMO

Model-based biomimetic control with neuro-muscular reflex requires accurate representation of muscle fascicle length, which affects both force generation capability of muscle and dynamics of muscle spindle. However, physiological data are insufficient to guide the selection of range of fascicle length for task control. Here a reverse engineering approach was used to investigate the effects of different fascicle length range on controller's force control ability, so as to justify the selection of operating range of muscle length for a grasp force task. We compared 3 different ranges of fascicle length for their effects on force generation, i.e. R1: 0.5 - 1.0 Lo, R2: 0.5 - 1.3 Lo and R3: 0.5 - 1.6 Lo. The rationale to test these range selections was based on both physiological realism and engineering considerations. The steady state force output and transient force responses were evaluated with a range of step inputs as controller input. Results show that the prosthetic finger can produce a linear steady state force response with all 3 ranges of fascicle length. Peak force was the largest with R3. Fascicle length range had no significant effect on the rise time in force generation tasks. Results suggest that a wider range of fascicle length may be more favorable for force capacity, since the contact point of force control may well fall near the optimal length (Lo) region.


Assuntos
Biomimética , Tendões , Mãos , Força da Mão , Músculo Esquelético , Tendões/diagnóstico por imagem
10.
Front Neurosci ; 15: 783505, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970115

RESUMO

The human hand has compliant properties arising from muscle biomechanics and neural reflexes, which are absent in conventional prosthetic hands. We recently proved the feasibility to restore neuromuscular reflex control (NRC) to prosthetic hands using real-time computing neuromorphic chips. Here we show that restored NRC augments the ability of individuals with forearm amputation to complete grasping tasks, including standard Box and Blocks Test (BBT), Golf Balls Test (GBT), and Potato Chips Test (PCT). The latter two were more challenging, but novel to prosthesis tests. Performance of a biorealistic controller (BC) with restored NRC was compared to that of a proportional linear feedback (PLF) controller. Eleven individuals with forearm amputation were divided into two groups: one with experience of myocontrol of a prosthetic hand and another without any. Controller performances were evaluated by success rate, failure (drop/break) rate in each grasping task. In controller property tests, biorealistic control achieved a better compliant property with a 23.2% wider range of stiffness adjustment than that of PLF control. In functional grasping tests, participants could control prosthetic hands more rapidly and steadily with neuromuscular reflex. For participants with myocontrol experience, biorealistic control yielded 20.4, 39.4, and 195.2% improvements in BBT, GBT, and PCT, respectively, compared to PLF control. Interestingly, greater improvements were achieved by participants without any myocontrol experience for BBT, GBT, and PCT at 27.4, 48.9, and 344.3%, respectively. The functional gain of biorealistic control over conventional control was more dramatic in more difficult grasp tasks of GBT and PCT, demonstrating the advantage of NRC. Results support the hypothesis that restoring neuromuscular reflex in hand prosthesis can improve neural motor compatibility to human sensorimotor system, hence enabling individuals with amputation to perform delicate grasps that are not tested with conventional prosthetic hands.

11.
Artigo em Inglês | MEDLINE | ID: mdl-34415835

RESUMO

Restoring neuromuscular reflex properties in the control of a prosthetic hand may potentially approach human-level grasp functions in the prosthetic hand. Previous studies have confirmed the feasibility of real-time emulation of a monosynaptic spinal reflex loop for prosthetic control. This study continues to explore how well the biomimetic controller could enable the amputee to perform force-control tasks that required both strength and error-tolerance. The biomimetic controller was programmed on a neuromorphic chip for real-time emulation of reflex. The model-calculated force of finger flexor was used to drive a torque motor, which pulled a tendon that flexed prosthetic fingers. Force control ability was evaluated in a "press-without-break" task, which required participants to press a force transducer toward a target level, but never exceeding a breakage threshold. The same task was tested either with the index finger or the full hand; the performance of the biomimetic controller was compared to a proportional linear feedback (PLF) controller, and the contralateral normal hand. Data from finger pressing task in 5 amputees showed that the biomimetic controller and the PLF controller achieved 95.8% and 66.9% the performance of contralateral finger in success rate; 50.0% and 25.1% in stability of force control; 59.9% and 42.8% in information throughput; and 51.5% and 38.4% in completion time. The biomimetic controller outperformed the PLF controller in all performance indices. Similar trends were observed with full-hand grasp task. The biomimetic controller exhibited capacity and behavior closer to contralateral normal hand. Results suggest that incorporating neuromuscular reflex properties in the biomimetic controller may provide human-like capacity of force regulation, which may enhance motor performance of amputees operating a tendon-driven prosthetic hand.


Assuntos
Amputados , Biomimética , Dedos , Mãos , Força da Mão , Humanos
12.
Front Aging Neurosci ; 13: 636184, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093164

RESUMO

Objectives: Either motor training or repetitive transcranial magnetic stimulation (rTMS) could modulate the neural plasticity after stroke. Therefore, synchronizing the two interventions may optimize the efficiency of recovery. In the present study, we aim to investigate the effect of rTMS along with hand grip training on the neurobehavioral and hand functional recovery in one cohort of subacute stroke patients. Methods: Thirty-nine stroke patients were enrolled in a single-center, single-blinded, randomized clinical trial. We tested different intervention effects of rTMS and hand grip training (group A), rTMS alone (group B), and hand grip training alone (group C). For the rTMS-treated groups, patients received 10 consecutive sessions of 5-Hz stimulation over the affected hemisphere with 750 pulses. Jebsen-Taylor Hand Function Test (JTHFT), Fugl-Meyer assessment of upper extremity (FMA-UE), grip strength, modified Barthel index (mBI), and ipsilesional motor evoked potential (iMEP) latency were assessed and compared across the groups. Results: We found that only rTMS along with hand grip training group all improved in JTHFT, FMA-UE, grip strength, and mBI (p ≤ 0.01) compared with the baseline among the three groups. Furthermore, this study demonstrated that rTMS plus hand grip training had much better results in improvement of neurobehavioral outcomes compared to the rTMS alone- and hand grip training alone-treated patients (p < 0.05). However, no significant differences were detected in neurophysiologic outcome between intra-groups and inter-groups (p > 0.05). Conclusion: These proof-of-concept results suggested that rTMS alone with hand grip training was a unique approach to promote hand functional recovery in stroke patients. It provided important information to design a large-scale multi-center clinical trial to further demonstrate the efficiency of the combination of central and peripheral stimulation. Clinical Trial Registration: http://www.chictr.org.cn (#ChiCTR1900023443).

13.
Research (Wash D C) ; 2021: 4675326, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104890

RESUMO

Integrating a prosthetic hand to amputees with seamless neural compatibility presents a grand challenge to neuroscientists and neural engineers for more than half century. Mimicking anatomical structure or appearance of human hand does not lead to improved neural connectivity to the sensorimotor system of amputees. The functions of modern prosthetic hands do not match the dexterity of human hand due primarily to lack of sensory awareness and compliant actuation. Lately, progress in restoring sensory feedback has marked a significant step forward in improving neural continuity of sensory information from prosthetic hands to amputees. However, little effort has been made to replicate the compliant property of biological muscle when actuating prosthetic hands. Furthermore, a full-fledged biorealistic approach to designing prosthetic hands has not been contemplated in neuroprosthetic research. In this perspective article, we advance a novel view that a prosthetic hand can be integrated harmoniously with amputees only if neural compatibility to the sensorimotor system is achieved. Our ongoing research supports that the next-generation prosthetic hand must incorporate biologically realistic actuation, sensing, and reflex functions in order to fully attain neural compatibility.

14.
Ann Biomed Eng ; 49(2): 673-688, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32816166

RESUMO

Current control of prosthetic hands is ineffective when grasping deformable, irregular, or heavy objects. In humans, grasping is achieved under spinal reflexive control of the musculotendon skeletal structure, which produces a hand stiffness commensurate with the task. We hypothesize that mimicking reflex on a prosthetic hand may improve grasping performance and safety when interacting with human. Here, we present a design of compliant controller for prosthetic hand with a neuromorphic model of human reflex. The model includes 6 motoneuron pools containing 768 spiking neurons, 1 muscle spindle with 128 spiking afferents, and 1 modified Hill-type muscle. Models are implemented using neuromorphic hardware with 1 kHz real-time computing. Experimental tests showed that the prosthetic hand could sustain a 40 N load compared to 95 N for an adult. Stiffness range was adjustable from 60 to 640 N/m, about 46.6% of that of human hand. The grasping velocity could be ramped up to 14.4 cm/s, or 24% of the human peak velocity. The complaint control could switch between free movement and contact force when pressing a deformable beam. The amputee can achieve a 47% information throughput of healthy humans. Overall, the reflex-enabled prosthetic hand demonstrated the attributes of human compliant grasping with the neuromorphic model of spinal neuromuscular reflex.


Assuntos
Mãos/fisiologia , Modelos Biológicos , Neurônios/fisiologia , Próteses e Implantes , Reflexo , Adulto , Amputados , Biomimética , Eletromiografia , Força da Mão/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Movimento , Músculo Esquelético/fisiologia
15.
Med Eng Phys ; 84: 174-183, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32977916

RESUMO

BACKGROUND: This paper describes the design and test of an automated functional electrical stimulation (FES) system for poststroke rehabilitation training. The aim of automated FES is to synchronize electrically induced movements to assist residual movements of patients. METHODS: In the design of the FES system, an accelerometry module detected movement initiation and movement performed by post-stroke patients. The desired movement was displayed in visual game module. Synergy-based FES patterns were formulated using a normal pattern of muscle synergies from a healthy subject. Experiment 1 evaluated how different levels of trigger threshold or timing affected the variability of compound movements for forward reaching (FR) and lateral reaching (LR). Experiment 2 explored the effect of FES duration on compound movements. RESULTS: Synchronizing FES-assisted movements with residual voluntary movements produced more consistent compound movements. Matching the duration of synergy-based FES to that of patients could assist slower movements of patients with reduced RMS errors. CONCLUSIONS: Evidence indicated that synchronization and matching duration with residual voluntary movements of patients could improve the consistency of FES assisted movements. Automated FES training can reduce the burden of therapists to monitor the training process, which may encourage patients to complete the training.


Assuntos
Terapia por Estimulação Elétrica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Elétrica , Humanos , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/complicações , Extremidade Superior
16.
IEEE Open J Eng Med Biol ; 1: 98-107, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35402945

RESUMO

Objective: This study assessed the feasibility to restore finger-specific sensory feedback in transradial amputees with electrical stimulation of evoked tactile sensation (ETS). Methods: Here we investigated primary somatosensory cortical (SI) responses of ETS using Magnetoencephalography. Results: SI activations revealed a causal correlation with peripheral stimulation of projected finger regions on the stump skin. Peak latency was accountable to neural transmission from periphery to SI. Peak intensity of SI response was proportional to the strength of peripheral stimulation, manifesting a direct neural pathway from skin receptors to SI neurons. Active regions in SI at the amputated side were consistent to the finger/hand map of homunculus, forming a mirror imaging to that of the contralateral hand. With sensory feedback, amputees can recognize a pressure at prosthetic fingers as that at the homonymous lost fingers. Conclusions: Results confirmed that the direct neural pathway from periphery to SI allows effective communication of finger-specific sensory information to these amputees.

17.
Front Neurol ; 10: 379, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31040817

RESUMO

Background and Importance: It is known that subthalamic nucleus deep brain stimulation (STN-DBS) at a fixed high frequency (>100 Hz) improves the primary motor symptoms of Parkinson disease (PD), but this stimulation does not improve or may even exacerbate the later-occurring axial symptoms and signs in PD (e.g., problems with gait or speech). Recent evidence suggests that STN-DBS at a fixed lower frequency (< 100 Hz) can improve speech and gait, but may worsen the tremor in PD. Clinical Presentation: The case involved a female patient who developed severe speech problems after 16 years high-frequency STN-DBS for PD. The tremor and dysarthria symptoms were both effectively treated by applying variable-frequency stimulation (VFS) containing only a combination of high frequencies. Conclusion: VFS containing several higher frequencies improved both the tremor and axial signs including speech problems in our patient. This case report suggests that VFS may be of clinical utility in the management of advanced PD, but this should be further verified in larger well-controlled studies.

18.
IEEE Trans Neural Syst Rehabil Eng ; 27(2): 256-264, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30763238

RESUMO

Functional electrical stimulation (FES) is capable of activating muscles that are under-recruited in neurological diseases, such as stroke. Therefore, FES provides a promising technology for assisting upper-limb motor functions in rehabilitation following stroke. However, the full benefits of FES may be limited due to lack of a systematic approach to formulate the pattern of stimulation. Our preliminary work demonstrated that it is feasible to use muscle synergy to guide the generation of FES patterns.In this paper, we present a methodology of formulating FES patterns based on muscle synergies of a normal subject using a programmable multi-channel FES device. The effectiveness of the synergy-based FES was tested in two sets of experiments. In experiment one, the instantaneous effects of FES to improve movement kinematics were tested in three patients post ischemic stroke. Patients performed frontal reaching and lateral reaching tasks, which involved coordinated movements in the elbow and shoulder joints. The FES pattern was adjusted in amplitude and time profile for each subject in each task. In experiment two, a 5-day session of intervention using synergy-based FES was delivered to another three patients, in which patients performed task-oriented training in the same reaching movements in one-hour-per-day dose. The outcome of the short-term intervention was measured by changes in Fugl-Meyer scores and movement kinematics. Results on instantaneous effects showed that FES assistance was effective to increase the peak hand velocity in both or one of the tasks. In short-term intervention, evaluations prior to and post intervention showed improvements in both Fugl-Meyer scores and movement kinematics. The muscle synergy of patients also tended to evolve towards that of the normal subject. These results provide promising evidence of benefits using synergy-based FES for upper-limb rehabilitation following stroke. This is the first step towards a clinical protocol of applying FES as therapeutic intervention in stroke rehabilitation.


Assuntos
Estimulação Elétrica/métodos , Reabilitação do Acidente Vascular Cerebral/instrumentação , Extremidade Superior , Adulto , Idoso , Algoritmos , Fenômenos Biomecânicos , Terapia por Estimulação Elétrica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Movimento , Músculo Esquelético/fisiopatologia , Paresia/fisiopatologia , Paresia/reabilitação , Desempenho Psicomotor , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/fisiopatologia
19.
IEEE Rev Biomed Eng ; 12: 154-167, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30307876

RESUMO

The past decades have witnessed remarkable progress in neural technologies such as functional electrical stimulation (FES) and their applications in neurorehabilitation and neuromodulation. These advances are powered by new neuroscientific understandings of the organization and compositionality of neuromuscular control illuminating how muscle groups may be activated together as discrete units known as muscle synergies. These parallel developments have promoted novel approaches to clinical rehabilitation for neurological disorders that are insurmountable to current treatments. One such breakthrough is the evolution of FES as a therapeutic tool in poststroke rehabilitation with an interventional strategy particularly inspired by the concept that muscles in humans may be purposefully coordinated through neuromotor modules represented as muscle synergies. This paper will review recent advances in multichannel FES technology, its potential applications in poststroke rehabilitation, new findings that support the neurological basis of the muscle synergies for generating natural motor tasks, and the application of the muscle-synergy concept in poststroke assessment and rehabilitation of motor impairment. Finally, we will recommend future directions of development in relation to assistive FES and synergy-driven adaptive training for poststroke rehabilitation.


Assuntos
Terapia por Estimulação Elétrica/tendências , Estimulação Elétrica/métodos , Reabilitação do Acidente Vascular Cerebral/tendências , Acidente Vascular Cerebral/terapia , Humanos , Músculo Esquelético/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Reabilitação do Acidente Vascular Cerebral/métodos
20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 3541-3544, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30441143

RESUMO

Functional Electrical Stimulation (FES) provides a promising technology for rehabilitation of upper-limb motor functions following stroke. It enables activation of individual muscles to assist restoration of impaired muscle synergies toward normal patterns. However, there lacks a systematic approach to optimize the FES stimulation patterns delivered to patients with stroke. Our preliminary work demonstrated that it is feasible to use muscle synergy patterns to guide the generation of FES patterns. Here, we present the methodology of customizing synergy-based FES using parameterized formulae with three strategies: weight-sensitive, variability-sensitive, and duration-sensitive. Each of them is comprised of two parameter sets, which represent different directions of parameter search. Two patients with ischemic stroke were recruited to participate in the preliminary test of these strategies. Preliminary results indicate that all strategies could increase the peak velocity in reaching movements, but only the "variability-sensitive" strategy restrained unwanted shoulder excursions. This pilot study demonstrates the feasibility to explore in the parameter space the directions, along which the clinical benefit of synergy-based FES can be tracked and continuously optimized.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Extremidade Superior , Estimulação Elétrica , Terapia por Estimulação Elétrica , Humanos , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...