Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771449

RESUMO

Spermidine is a class of biologically active organic small molecules that play an important role in maintaining intestinal homeostasis. The specific objective of this study was to explore the effects of spermidine on intestinal morphology, metabolites, and microbial diversity in mice. We showed that 0.3 mmol/L of spermidine significantly promoted the growth of ileal villi (p < 0.05), and 3.0 mmol/L of spermidine significantly increased the body weight of mice and promoted the growth of jejunum villi (p < 0.05). The 16S rDNA sequencing results indicated that 3.0 mmol/L of spermidine affected the balance of the intestinal flora by increasing the abundance of intestinal Lactic acid bacteria and reducing the abundance of harmful bacteria (Turicibacter and Alistipes). Additionally, spermidine affects the levels of microbial metabolites such as succinic acid and Pantetheine. In summary, spermidine affects intestinal morphology and regulates intestinal flora and metabolites, and this study has provided a new understanding of spermidine's effects on the intestinal tract.


Assuntos
Microbioma Gastrointestinal , Espermidina , Espermidina/farmacologia , Mucosa Intestinal/metabolismo , Íleo , Jejuno , Microbioma Gastrointestinal/fisiologia
2.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 36(2): 184-188, 2020 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-32744017

RESUMO

Objective: To study the effects of α-enolase (ENO1) gene interference expression on proliferation, and cell cycle of follicular granulosa cells from Zi geese. Methods: F1 follicular granulosa cells were primary cultured (mixed culture), which were divided into four groups: ENO1 interference expression group (RNAi), unrelated sequence group (NC), culture group (Control), transfection reagent group (Lip). The apoptosis rate and cell cycle phase of the interference group and the control group were detected by the flow cytometry. Results: ENO1 gene interference expression slowed the proliferation of granulosa cells, increased the apoptosis, and increased the proportion of granulosa cells in G2/M phase. Conclusion: ENO1 gene interference expression could cause G2/M phase arrest in primary cultured goose follicular granulosa cells, induce cell apoptosis and inhibit cell proliferation.


Assuntos
Apoptose , Proliferação de Células , Gansos , Células da Granulosa/citologia , Fosfopiruvato Hidratase , Animais , Pontos de Checagem do Ciclo Celular , Feminino , Fosfopiruvato Hidratase/genética , Interferência de RNA
3.
J Vet Res ; 64(1): 141-149, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32258811

RESUMO

INTRODUCTION: Enolases are enzymes in the glycolytic pathway, which catalyse the reversible conversion of D-2-phosphoglycerate into phosphoenol pyruvate in the second half of the pathway. In this research, the effects of α-enolase (ENO1) on steroid reproductive-related hormone receptor expression and on hormone synthesis of primary granulosa cells from goose F1 follicles were studied. MATERIAL AND METHODS: Primary granulosa cells from the F1 follicles of eight healthy 8-month-old Zi geese were separated and cultured. An ENO1 interference expression vector was designed, constructed and transfected into primary cultured granulosa cells. The mRNA expression levels of follicle-stimulating hormone receptor (FSHR), luteinising hormone receptor (LHR), oestrogen receptor α (ER α), oestrogen receptor ß (ER ß), growth hormone receptor (GHR) and insulin-like growth factor binding protein-1 (IGFBP-1) in the cells were evaluated as were the secretion levels of oestradiol, activin, progesterone, testosterone, inhibin and follistatin in cell supernatant. RESULTS: α-enolase gene silencing reduced the expression of FSHR, LHR, ERα, ERß, GHR, and IGFBP-1 mRNA, potentiated the secretion of oestrogen, progesterone, testosterone, and follistatin of granulosa cells, and hampered the production of activin and inhibin. CONCLUSION: ENO1 can regulate the reactivity of granulosa cells to reproductive hormones and regulate cell growth and development by adjusting their hormone secretion and reproductive hormone receptor expression. The study provided a better understanding of the functional action of ENO1 in the processes of goose ovary development and egg laying.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...