Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomicro Lett ; 14(1): 5, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34859315

RESUMO

High-energy-density lithium-ion batteries (LIBs) that can be safely fast-charged are desirable for electric vehicles. However, sub-optimal lithiation potential and low capacity of commonly used LIBs anode cause safety issues and low energy density. Here we hypothesize that a cobalt vanadate oxide, Co2VO4, can be attractive anode material for fast-charging LIBs due to its high capacity (~ 1000 mAh g-1) and safe lithiation potential (~ 0.65 V vs. Li+/Li). The Li+ diffusion coefficient of Co2VO4 is evaluated by theoretical calculation to be as high as 3.15 × 10-10 cm2 s-1, proving Co2VO4 a promising anode in fast-charging LIBs. A hexagonal porous Co2VO4 nanodisk (PCVO ND) structure is designed accordingly, featuring a high specific surface area of 74.57 m2 g-1 and numerous pores with a pore size of 14 nm. This unique structure succeeds in enhancing Li+ and electron transfer, leading to superior fast-charging performance than current commercial anodes. As a result, the PCVO ND shows a high initial reversible capacity of 911.0 mAh g-1 at 0.4 C, excellent fast-charging capacity (344.3 mAh g-1 at 10 C for 1000 cycles), outstanding long-term cycling stability (only 0.024% capacity loss per cycle at 10 C for 1000 cycles), confirming the commercial feasibility of PCVO ND in fast-charging LIBs.

2.
ACS Appl Mater Interfaces ; 13(46): 55020-55028, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34752063

RESUMO

Sodium-ion batteries (SIBs) are promising candidates for large-scale energy storage systems due to the abundance and wide distribution of sodium resources. Various solutions have been successfully applied to revolve the large-ion-size-induced battery issues at the mid-to-low current density range. However, the fast-charging properties of SIBs are still in high demand to accommodate the increasing energy needs at large to grid scales. Herein, a core-shell Co2VO4/carbon composite anode is designed to tackle the fast-charging problem of SIBs. The synergetic effect from the stable spinel structure of Co2VO4, the size of the nanospheres, and the carbon shell provide enhanced Na+ ion diffusion and electron transfer rates and outstanding electrochemical performance. With an ultrahigh current density of 5 A g-1, the Co2VO4@C anode achieved a capacity of 135.1 mAh g-1 and a >98% capacity retention after 2000 cycles through a pseudocapacitive dominant process. This study provides insights for SIB fast-charging material design and other battery systems such as lithium-ion batteries.

3.
Nanomaterials (Basel) ; 11(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209245

RESUMO

Potassium-ion batteries (KIBs) have come up as a potential alternative to lithium-ion batteries due to abundant potassium storage in the crust. Red phosphorus is a promising anode material for KIBs with abundant resources and high theoretical capacity. Nevertheless, large volume expansion, low electronic conductivity, and limited K+ charging speed in red phosphorus upon cycling have severely hindered the development of red phosphorus-based anodes. To obtain improved conductivity and structural stability, surface engineering of red phosphorus is required. Poly(3,4-ethylenedioxythiophene) (PEDOT)-coated red phosphorus nanospheres (RPNP@PEDOT) with an average diameter of 60 nm were synthesized via a facile solution-phase approach. PEDOT can relieve the volume change of red phosphorus and promote electron/ion transportation during charge-discharge cycles, which is partially corroborated by our DFT calculations. A specific capacity of 402 mAh g-1 at 0.1 A g-1 after 40 cycles, and a specific capacity of 302 mAh g-1 at 0.5 A g-1 after 275 cycles, were achieved by RPNP@PEDOT anode with a high pseudocapacitive contribution of 62%. The surface-interface engineering for the organic-inorganic composite of RPNP@PEDOT provides a novel perspective for broad applications of red phosphorus-based KIBs in fast charging occasions.

4.
Chempluschem ; 84(2): 203-209, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31950692

RESUMO

Graphene-coated silicon nanoparticles with polydopamine buffers have been designed and successfully fabricated as anodes for lithium ion batteries, where the polydopamine was grown on the silicon nanoparticles and then coated with graphene layers. The expansion cavities for silicon nanoparticles during charging and discharging process are provided by the polydopamine buffer layers. The outermost graphene coating layers not only keep the pulverized silicon particles together without disintegration, but also improve the electric conductivity of silicon nanoparticles. Silicon nanoparticles of an industrial product level with different size distributions and oxidation layers were used in this work. High electrochemical performances with specific capacities of 1100 mAh g-1 were achieved by the designed silicon composites with polydopamine and graphene after 550 cycles at a current rate of 200 mA g-1 .

5.
Natl Sci Rev ; 6(4): 767-774, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34691932

RESUMO

Many different phase structures have been discovered for silver iodides. The ß and γ phases were found to be the most common ones at ambient conditions, while the rock-salt phase was found to be stable under pressures between 400 MPa and 11.3 GPa. Recently, the α phase was demonstrated to be stable under ambient conditions when the particle sizes were reduced to below 10 nm. However, no other phase has been reported to be stable for silver iodides under ambient conditions. Rock-salt and helix structures have been found to be stable under ambient conditions in this study. The structures have been characterized by elemental mapping, Raman scattering, and high-resolution transmission electron microscopy. The stabilities of these structures were also confirmed by molecular dynamics and density functional theory.

6.
J Colloid Interface Sci ; 533: 445-451, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30172770

RESUMO

In order to suppress the shuttling of soluble lithium polysulfides in Li-S batteries and increase the conductivity of the sulfur cathode, here we report the design and synthesis of three-dimensional (3D) highly ordered porous carbon bulk network (PCBNs), using silica (SiO2) nanospheres as removable hard templates and soluble starch as carbon source. After carbonization and template removal, the as-prepared PCBNs composed of interconnected hollow carbon balls exhibit large surface area (447.4 m2/g) and large pore volume (1.567 cm3/g), high graphitization degree and robust framework. Serving as an efficient sulfur host, PCBNs supported sulfur cathode (S@PCBNs with sulfur content of 72 wt%) delivers a high discharge capacity of 760 mA h/g after 150 cycles at 0.1 C and 455 mA h/g after 400 cycles at 1 C. The superior lithium storage properties is attributed to the novel hierarchical microstructure of the PCBNs, in which the large hollow space not only allows high loading of sulfur but also efficiently accommodates the large volumetric expansion. Moreover, the interconnected PCBNs with high conductivity can spatially confine the shuttling of soluble polysulfides and enhance the redox reaction kinetics.

7.
Nanoscale Adv ; 1(2): 656-663, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36132246

RESUMO

Multidimensional architecture design is a promising strategy to explore unique physicochemical characteristics by synergistically integrating different structural and compositional materials. Herein, we report the facile synthesis of a novel dendritic hybrid architecture, where carbon nanotubes (CNTs) with nickel sulfide nanoparticles encapsulated inside are epitaxially grown out of the porous electrospun N-doped carbon nanofibers (CNFs) (denoted as CNT@NS@CNFs) through a combined strategy of electrospinning and chemical vapor deposition (CVD). The adopted thiophene (C4H4S) not only serves as a carbon source for the growth of CNTs but also as a sulfur source for the sulfurization of Ni particles and S-doping into carbon matrices. When examined as an anode material for lithium-ion batteries (LIBs), the dendritic CNT@NS@CNFs display superior lithium storage properties including good cycle stability and high rate capability, delivering a high reversible capacity of 630 mA h g-1 at 100 mA g-1 after 200 cycles and 277 mA h g-1 at a high rate of 1000 mA g-1. These outstanding electrochemical properties can be attributed to the novel hybrid architecture, in which the encapsulation of nickel sulfide nanoparticles within the CNT/CNFs not only efficiently buffers the volume changes upon lithiation/delithiation, but also facilitates charge transfer and electrolyte diffusion owing to the highly conductive networks with open frame structures.

8.
Chem Commun (Camb) ; 54(56): 7782-7785, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29942947

RESUMO

Atomic layer deposition (ALD) of TiO2 shells on MoO3 nanobelts (denote as TiO2@MoO3) is realized using a home-made ALD system, which allows a controllable hydrolysis reaction of TiCl4-H2O on an atomic scale. When used as an anode material for lithium ion batteries, the TiO2@MoO3 electrode demonstrates much enhanced lithium storage performance including higher specific capacity, better cycling stability and rate capability.

9.
Chem Commun (Camb) ; 54(52): 7191-7194, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29896592

RESUMO

A novel rectangular-ambulatory-plane TiO2 plate with exposed {001} facets was developed for the first time via a facile microwave-assisted hydrothermal approach in the presence of HF solution. Solid evidence demonstrated that HF plays dual roles in the hydrothermal process, both as a stabilizer for the {001} facet growth and as an etching reagent selectively destroying the {001} facets.

10.
Nanoscale ; 10(19): 9292-9303, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29737351

RESUMO

Coupling two semiconductors together to construct a Z-scheme type photocatalytic system is an efficient strategy to solve the serious recombination challenge of photogenerated electrons and holes. In this work, we develop a novel composite photocatalyst by sandwiching metallic 1T-phase MoS2 nanosheets between MoO3 and g-C3N4 (MoO3/1T-MoS2/g-C3N4) for the first time. The metallic 1T-phase MoS2 acts as an efficient electron mediator between MoO3 and g-C3N4 to construct an all-solid-state Z-scheme photocatalytic system, resulting in a highly-efficient spatial charge separation and transfer process. Benefiting from this, the newly developed MoO3/1T-MoS2/g-C3N4 exhibits a drastically enhanced photocatalytic H2 evolution rate of 513.0 µmol h-1 g-1 under visible light irradiation (>420 nm), which is nearly 12 times higher than that of the pure g-C3N4 (39.5 µmol h-1 g-1), and 3.5 times higher than that of MoO3/g-C3N4 (145.7 µmol h-1 g-1). More importantly, the originally unstable 1T-phase MoS2 becomes very stable in MoO3/1T-MoS2/g-C3N4 because of the sandwich structure where 1T-phase MoS2 is protected by MoO3 and g-C3N4, which endows the photocatalyst with excellent photostability. It is believed that this study will provide new insights into the design of efficient and stable Z-scheme heterostructures for photocatalytic applications.

11.
ACS Nano ; 12(4): 3406-3416, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29641178

RESUMO

To address the volume-change-induced pulverization problems of electrode materials, we propose a "silica reinforcement" concept, following which silica-reinforced carbon nanofibers with encapsulated Sb nanoparticles (denoted as SiO2/Sb@CNFs) are fabricated via an electrospinning method. In this composite structure, insulating silica fillers not only reinforce the overall structure but also contribute to additional lithium storage capacity; encapsulation of Sb nanoparticles into the carbon-silica matrices efficiently buffers the volume changes during Li-Sb alloying-dealloying processes upon cycling and alleviates the mechanical stress; the porous carbon nanofiber framework allows for fast charge transfer and electrolyte diffusion. These advantageous characteristics synergistically contribute to the superior lithium storage performance of SiO2/Sb@CNF electrodes, which demonstrate excellent cycling stability and rate capability, delivering reversible discharge capacities of 700 mA h/g at 200 mA/g, 572 mA h/g at 500 mA/g, and 468 mA h/g at 1000 mA/g each after 400 cycles. Ex situ as well as in situ TEM measurements confirm that the structural integrity of silica-reinforced Sb@CNF electrodes can efficiently withstand the mechanical stress induced by the volume changes. Notably, the SiO2/Sb@CNF//LiCoO2 full cell delivers high reversible capacities of ∼400 mA h/g after 800 cycles at 500 mA/g and ∼336 mA h/g after 500 cycles at 1000 mA/g.

12.
Nanoscale ; 10(16): 7860-7870, 2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29664490

RESUMO

A novel flower-like In2S3/CdIn2S4/In2O3 (ICS) ternary heterostructure (HS) is rationally constructed for the first time by a series of carefully designed procedures. In2O3 nanoflakes are the main constituent units which assemble into a flower-like skeleton structure, and CdIn2S4 nanoparticles are in situ generated on the surface of In2O3 nanoflakes through the transformation of CdS quantum dots (QDs) while In2S3 nanoparticles are in situ produced at the region between CdIn2S4 nanoparticles and In2O3 nanoflakes resulting from a synchronous sulfuration procedure. As expected, the rationally designed ICS ternary HSs display significantly enhanced photocatalytic H2 production, especially ICS5 (sulfurized for 5 h) with the highest H2 evolution rate of 20.04 µmol h-1 (10 mg catalyst is used for photocatalytic reaction), which is 26.7 times and 2.6 times higher than that of pure In2O3 (0.75 µmol h-1) and In2S3/In2O3 binary HS (7.88 µmol h-1), respectively. The enhanced photocatalytic activity can be attributed to the multiple interfaces formed in the ICS HSs, including the CdIn2S4-In2O3 interface, the In2S3-In2O3 interface, and the CdIn2S4-In2O3-In2S3 interface, which construct multiple pathways for the transfer of photogenerated charge carriers, effectively promoting the photocatalytic hydrogen production.

13.
Nanoscale ; 10(13): 6159-6167, 2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29560486

RESUMO

To address the volume change-induced pulverization problem of tin-based anodes, a concept using hollow carbon nanoballs (HCNBs) as buffering supports is herein proposed. HCNBs with hollow interior, flexibility and graphitic crystallization are first prepared by a combined method of chemical vapor deposition (CVD) and template-synthesis using CH4 as the carbon source and CaCO3 as the conformal template. The ultrafine SnO2 nanoparticles are loaded onto the HCNBs (denoted as SnO2@HCNBs) via pyrolysis of tin(ii) 2-ethylhexanoate at 300 °C in air. On further annealing SnO2@HCNBs in Ar, SnO2 is partially reduced to SnOx by consuming a part of carbon of HCNBs as the reducing agent, and thus SnOx@HCNBs are obtained (note that SnOx represents a composite consisting of SnO2, SnO and Sn phases). When applied as anode materials for lithium ion batteries (LIBs), HCNBs deliver high reversible capacities of 841 mA h g-1 after 125 cycles at 200 mA g-1, and 726 mA h g-1 after 400 cycles even at 1000 mA g-1, while SnO2@HCNBs and SnOx@HCNBs exhibit discharge capacities of 1042 and 1299 mA h g-1 after 400 cycles at 200 mA g-1, respectively. Notably, all of them display gradually increased capacity with retention over 100% even after long-term cycling, which is attributed to the novel robust characteristic of the HCNBs as revealed by the ex situ TEM analysis. The flexible hollow HCNBs with high graphitic crystallization not only efficiently tolerate the volume changes of the Li-Sn alloying-dealloying but also facilitate the electrolyte/charge transfer owing to the hollow structure and high conductivity of the HCNBs.

14.
ChemSusChem ; 11(7): 1187-1197, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29400001

RESUMO

Two-dimensional/two-dimensional (2D/2D) stacking heterostructures are highly desirable in fabricating efficient photocatalysts because face-to-face contact can provide a maximized interfacial region between the two semiconductors; this largely facilitates the migration of charge carriers. Herein, a WS2 /graphitic carbon nitride (CN) 2D/2D nanosheet heterostructure decorated with CdS quantum dots (QDs) has been designed, for the first time. Optimized CdS/WS2 /CN without another cocatalyst exhibits a significantly enhanced photocatalytic H2 evolution rate of 1174.5 µmol h-1 g-1 under visible-light irradiation (λ>420 nm), which is nearly 67 times higher than that of the pure CN nanosheets. The improved photocatalytic activity can be primarily attributed to the highly efficient charge-transfer pathways built among the three components, which effectively accelerate the separation and transfer of photogenerated electrons and holes, and thus, inhibit their recombination. Moreover, the extended light-absorption range also contributes to excellent photocatalytic efficiency. In addition, the CdS/WS2 /CN photocatalyst shows excellent stability and reusability without apparent decay in the photocatalytic H2 evolution within 4 cycles in 20 h. It is believed that this work may shed light on specifically designed 2D/2D nanosheet heterostructures for more efficient visible-light-driven photocatalysts.

15.
J Colloid Interface Sci ; 514: 686-693, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29310098

RESUMO

MoO3 as electrode material for lithium ion batteries (LIBs) suffers from the poor ionic and electronic conductivity, while hybridizing nanostructured MoO3 with carbon-based materials is regarded as an efficient strategy. Herein, we report the facile synthesis of MoO3 nanoplates within foam-like carbon nanoflakes (CNFs) via the pyrolysis of molybdenum 2-ethtlhexanoate (C48H90MoO12) at a low temperature of 300 °C under ambient atmosphere. Mixing C48H90MoO12 with the highly porous foam-like CNFs allows the sufficient pyrolysis of Mo precursor, which can readily crystallize into MoO3 with plate morphology. The loading amount of MoO3 within CNFs can be easily and precisely controlled by adjusting the relative amount of C48H90MoO12/CNFs, while the plate morphology of MoO3 can be well preserved. The structural characteristics as well as the formation mechanism are investigated. When used as anode material for LIBs, optimized MoO3/CNFs displays superior lithium storage performance, delivering a high discharge capacity of 791 mA h/g after 100 cycles at 500 mA/g and even ∼600 mA h/g at a high rate of 2000 mA/g. Moreover, the present pyrolysis synthetic strategy can be generally applied for low-cost and large-scale fabrication of various MoO3/carbon nanocomposites, which demonstrates great potential in the development of high-performance electrodes for electrochemical energy-storage.

16.
ACS Appl Mater Interfaces ; 9(49): 42751-42760, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29143523

RESUMO

The nitrogen-doping approach has been intensively adopted to improve various properties of metal oxides, especially for adjusting the energy band structure and extending the photoresponse range of oxide photocatalysts. However, the nitrogen doping behavior is still unintelligible and complex due to the diversity of compositions and crystal structures. In this work, new insights into the electronic structure and photoelectrochemical (PEC) properties of nitrogen-doped HNb3O8 were presented. On the one hand, we utilized an in situ experimental strategy to ascertain the effect of nitrogen doping on the energy band and photoelectrochemical (PEC) properties of HNb3O8 and nitrogen-doped HNb3O8 (N-HNb3O8). Their energy band level, donor densities, and interfacial charge transfer properties were studied by Mott-Schottky plots and electrochemical impedance spectroscopy. After nitrogen doping, the conduction band position is unusually descended by 0.23 eV, the valance band position is raised by 0.51 eV, the donor density (Nd) is increased from 3.71 × 1021 to 6.46 × 1021 cm-3, and interfacial charge transfer efficiency is reduced, though. On the other hand, density functional theoretical calculations were also conducted, so as to understand the electronic structures of HNb3O8 and N-HNb3O8. After nitrogen doping, the electronic structure is modified due to the upshift of the valance band edge consisting of hybrid N 2p and O 2p orbitals and the downshift of the conduction band edge consisting of the H 1s and Nb 4d orbitals. Furthermore, these insights into the behavior of nitrogen-doped semiconductors have important guiding significance toward their potential applications.

17.
Nat Commun ; 8(1): 683, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28947750

RESUMO

Pseudo-topotactic conversion of carbon nanotubes into one-dimensional carbon nanowires is a challenging but feasible path to obtain desired diameters and morphologies. Here, a previously predicted but experimentally unobserved carbon allotrope, T-carbon, has been produced from pseudo-topotactic conversion of a multi-walled carbon nanotube suspension in methanol by picosecond pulsed-laser irradiation. The as-grown T-carbon nanowires have the same diameter distribution as pristine carbon nanotubes, and have been characterized by high-resolution transmission electron microscopy, fast Fourier transform, electron energy loss, ultraviolet-visible, and photoluminescence spectroscopies to possess a diamond-like lattice, where each carbon is replaced by a carbon tetrahedron, and a lattice constant of 7.80 Å. The change in entropy from carbon nanotubes to T-carbon reveals the phase transformation to be first order in nature. The computed electronic band structures and projected density of states are in good agreement with the optical absorption and photoluminescence spectra of the T-carbon nanowires.T-carbon is a previously predicted but so far unobserved allotrope of carbon, with a crystal structure similar to diamond, but with each atomic lattice position replaced by a carbon tetrahedron. Here, the authors produce T-carbon nanowires via laser-irradiating a suspension of carbon nanotubes in methanol.

18.
ACS Appl Mater Interfaces ; 9(30): 25377-25386, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28696670

RESUMO

A novel CdS/ZnO heterojunction constructed of zero-dimensional (0D) CdS quantum dots (QDs) and two-dimensional (2D) ZnO nanosheets (NSs) was rationally designed for the first time. The 2D ZnO NSs were assembled into ZnO microflowers (MFs) via an ultrasonic-assisted hydrothermal procedure (100 °C, 12 h) in the presence of a NaOH solution (0.06 M), and CdS QDs were deposited on both sides of every ZnO NS in situ by using the successive ionic-layer absorption and reaction method. It was found that the ultrasonic treatment played an important role in the generation of ZnO NSs, while NaOH was responsible to the assembly of a flower-like structure. The obtained CdS/ZnO 0D/2D heterostructures exhibited remarkably enhanced photocatalytic activity for hydrogen evolution from water splitting in comparison with other CdS/ZnO heterostructures with different dimensional combinations such as 2D/2D, 0D/three-dimensional (3D), and 3D/0D. Among them, CdS/ZnO-12 (12 deposition cycles of CdS QDs) exhibited the highest hydrogen evolution rate of 22.12 mmol/g/h, which was 13 and 138 times higher than those of single CdS (1.68 mmol/g/h) and ZnO (0.16 mmol/g/h), respectively. The enhanced photocatalytic activity can be attributed to several positive factors, such as the formation of a Z-scheme photocatalytic system, the tiny size effect of 0D CdS QDs and 2D ZnO NSs, and the intimate contact between CdS QDs and ZnO NSs. The formation of a Z-scheme photocatalytic system remarkably promoted the separation and migration of photogenerated electron-hole pairs. The tiny size effect effectively decreased the recombination probability of electrons and holes. The intimate contact between the two semiconductors efficiently reduced the migration resistance of photogenerated carriers. Furthermore, CdS/ZnO-12 also presented excellent stability for photocatalytic hydrogen evolution without any decay within five cycles in 25 h.

19.
ACS Appl Mater Interfaces ; 9(19): 16117-16127, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28467037

RESUMO

In this work, a novel porous nanoneedlelike MnOx-FeOx catalyst (MnOx-FeOx nanoneedles) was developed for the first time by rationally heat-treating metal-organic frameworks including MnFe precursor synthesized by hydrothermal method. A counterpart catalyst (MnOx-FeOx nanoparticles) without porous nanoneedle structure was also prepared by a similar procedure for comparison. The two catalysts were systematically characterized by scanning and transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, hydrogen temperature-programmed reduction, ammonia temperature-programmed desorption, and in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFT), and their catalytic activities were evaluated by selective catalytic reduction (SCR) of NOx by NH3. The results showed that the rationally designed MnOx-FeOx nanoneedles presented outstanding low-temperature NH3-SCR activity (100% NOx conversion in a wide temperature window from 120 to 240 °C), high selectivity for N2 (nearly 100% N2 selectivity from 60 to 240 °C), and excellent water resistance and stability in comparison with the counterpart MnOx-FeOx nanoparticles. The reasons can be attributed not only to the unique porous nanoneedle structure but also to the uniform distribution of MnOx and FeOx. More importantly, the desired Mn4+/Mnn+ and Oα/(Oα + Oß) ratios, as well as rich redox sites and abundant strong acid sites on the surface of the porous MnOx-FeOx nanoneedles, also contribute to these excellent performances. In situ DRIFT suggested that the NH3-SCR of NO over MnOx-FeOx nanoneedles follows both Eley-Rideal and Langmuir-Hinshelwood mechanisms.

20.
Nano Lett ; 17(6): 3376-3382, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28535352

RESUMO

Nanostructured phosphorus-carbon composites are promising materials for Li-ion and Na-ion battery anodes. A hierarchical phosphorus hybrid, SiC@graphene@P, has been synthesized by the chemical vapor deposition of phosphorus on the surfaces of barbed nanowires, where the barbs are vertically grown graphene nanosheets and the cores are SiC nanowires. A temperature-gradient vaporization-condensation method has been used to remove the unhybridized phosphorus particles formed by homogeneous nucleation. The vertically grown barb shaped graphene nanosheets and a high concentration of edge carbon atoms induced a fibrous red phosphorus (f-RP) growth with its {001} planes in parallel to {002} planes of nanographene sheets and led to a strong interpenetrated interface interaction between phosphorus and the surfaces of graphene nanosheets. This hybridization has been demonstrated to significantly enhance the electrochemical performances of phosphorus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...