Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 5(27): 16440-16447, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32685807

RESUMO

Silicon suboxide (SiO x ) is one of the most promising anodes for the next-generation high-power lithium-ion batteries because of its higher lithium storage capacity than current commercial graphite, relatively smaller volume variations than pure silicon, and appropriate working potential. However, the high cost, poor cycling stability, and rate capability hampered its industrial applications due to its complex production process, volume changes during Li+ insertion/extraction, and low conductivity. Herein, a low-cost and high-capacity SiO x /C@graphite (SCG) hybrid was designed and synthesized by a facile one-pot carbonization/hydrogen reduction process of the rice husk and graphite. As an advanced anode for lithium-ion batteries, the SiO x /C@graphite hybrid delivers a high reversible capacity with significantly enhanced cycling stability (842 mAh g-1 after 300 cycles at 0.5 A g-1) and rate capability (562 mAh g-1 after 300 cycles at 1 A g-1). The great improvement in performances could be attributed to the positive synergistic effect of SiO x nanoparticles as lithium storage active materials, the in situ-formed carbon matrix network derived from biomass functioning as an efficient three-dimensional conductive network and spacer to improve the rate capability and buffer the volume changes, and graphite as a conductor to further improve the rate capabilities and cycling stability by increasing the conductivity. The low-cost and high-capacity SCG derived from rice husk synthesized by a facile, scalable synthetic method turns out to be a promising anode for the next-generation high-power lithium-ion batteries.

2.
J Mater Chem B ; 8(26): 5682-5693, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32500887

RESUMO

A non-swelling hydrogel adhesive is urgently needed in clinical application for wound closure; however, preparing a non-swelling hydrogel adhesive with superior mechanical and tissue adhesion properties remains a challenge. In this study, we developed a new family of non-swelling hydrogel adhesives composed of Pluronic F127 diacrylate, poly(ethylene glycol) diacrylate, modified sodium alginate, and tannic acid. Physical and biological properties of the hydrogels were systematically evaluated in vitro/vivo. The results indicated that the hydrogels exhibited non-swelling features, robust mechanical properties and good adhesion abilities toward various tissues. The hydrogels also exhibited good cytocompatibility and strong antibacterial activities against S. aureus and E. coli. Additionally, the hydrogel could be used for sutureless wound closure and displayed better advantages compared to sutures and commercial adhesive pads. The above results demonstrated that our non-swelling hydrogel adhesive with robust mechanical properties holds great promise for applications in clinical surgery.


Assuntos
Adesivos/farmacologia , Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Hidrogéis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Adesividade/efeitos dos fármacos , Adesivos/síntese química , Adesivos/química , Animais , Antibacterianos/síntese química , Antibacterianos/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Teoria da Densidade Funcional , Escherichia coli/efeitos dos fármacos , Hidrogéis/síntese química , Hidrogéis/química , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Ratos , Propriedades de Superfície , Cicatrização/efeitos dos fármacos
3.
Dalton Trans ; 48(17): 5749-5755, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30973163

RESUMO

A polyoxometalate-based microsphere catalyst has been prepared through the one-step template method using phosphotungstic acid as the core and TiO2 as the shell, denoted as PW12@TiO2. Multiple characterisation methods namely FT-IR, XRD, XPS, Raman, SEM and TEM were used to characterize the resultant materials, and results indicate that the phosphotungstic acid was encapsulated into the TiO2 phase as the core to form the core-shell structure. The resultant composites were used as catalysts for the oxidative desulfurization of a model oil with H2O2 as oxidant and acetonitrile as solvent. Catalyst PW12@TiO2 exhibited good catalytic activity, with 99.9% S-removal of dibenzothiophene after 60 min under the optimum conditions. Leaching and recycling experiments revealed that the PW12@TiO2 catalyst has excellent recyclability, and there was no significant decrease in S-removal after seven cycles under identical reaction conditions, which could be attributed to the fabrication of the core-shell structure, thus inhibiting the loss in the active sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...