Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 262(Pt 2): 129662, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266842

RESUMO

Poor foliar deposition and retention of pesticides results in serious pesticide residues and environmental pollution. Organic-inorganic hybridized nanoparticles (OIHN), combining the advantages of organic and inorganic materials, can be used as carriers to load pesticides for efficient and safe application. Herein, a novel multifunctional OIHN composed of mesoporous silica nanoparticles (MSNs) and cationic chitosan quaternary ammonium salt (HACC) was constructed and used as a delivery system for prothioconazole (PTC). The resultant PTC@MSNs-HACC exhibited a remarkable loading capacity of 39.07 wt% and demonstrated enhanced PTC release (31.47 %) under alkaline conditions. The UV-shielding properties of MSNs efficiently shielded PTC from photodegradation, increasing its photostability by over threefold. The strong positive charge of HACC conferred excellent adhesion of PTC@MSNs-HACC to fungal cell membranes, leading to high deposition on wheat leaves with improved rain-wash resistance (increased by 30 %). Consequently, PTC@MSNs-HACC (EC50: 12.48 mg/L) exhibited superior wheat scab control compared to PTC emulsifiable concentrate (EC50: 28.49 mg/L). Additionally, PTC@MSNs-HACC displayed excellent uptake and transport in plants, ensuring plant safety and reducing toxicity to zebrafish by >1-fold. The potential application of the developed PTC@MSNs-HACC in agricultural production holds significant promise and is anticipated to find widespread use in the future.


Assuntos
Quitosana , Micoses , Nanopartículas , Praguicidas , Triazóis , Animais , Quitosana/química , Peixe-Zebra , Nanopartículas/química , Meio Ambiente , Dióxido de Silício/química , Porosidade , Portadores de Fármacos/química
2.
Int J Biol Macromol ; 253(Pt 1): 126425, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37607654

RESUMO

Asion corn borer (Ostrinia furnacalis (Guenee)) is one of the most important factors affecting the normal growth and yield of corn. However, chemical control methods currently in use cause severe pollution. In the present study, aminated mesoporous silica nanoparticles (MSNs-NH2) and polylactic acid (PLA) were used as the carrier and capping agent respectively to construct an insect gut microenvironment nano-response system that loaded spinosad, a biopesticide used to control O. furnacalis. The resulting spinosad@MSNs-PLA demonstrated high loading capacity (38.6 %) and improved photostability of spinosad. Moreover, this delivery system could intelligently respond to the intestinal microenvironment of the corn borer's gut and achieve the smart release of spinosad. Compared with the conventional pesticide, spinosad@MSNs-PLA exhibited superior efficacy in controlling the O. furnacalis and could uptake and transport in maize plants without adverse effects on their growth. Furthermore, the toxicity of spinosad@MSNs-PLA on zebrafish was reduced by over 50 times. The prepared spinosad@MSNs-PLA has great potential and could be widely applied in agricultural production in the future. This approach could improve the utilization of pesticide and reduce environmental pollution. In addition, MSNs-PLA nano vectors provide new ideas for the control of other borer pests.


Assuntos
Nanopartículas , Praguicidas , Animais , Zea mays , Dióxido de Silício , Peixe-Zebra , Poliésteres , Porosidade
3.
J Agric Food Chem ; 69(23): 6485-6494, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34077226

RESUMO

Silver nanoparticles (AgNPs) have remarkable and broad-spectrum antibacterial activities against Gram-positive (G+) and Gram-negative bacteria (G-). However, the negative surface potential of AgNPs limits their antibacterial activities due to the electrostatic repulsion with the negatively charged bacterial cell membrane. To address the limitation, AgNPs were loaded in the mesoporous silica nanoparticles by preparing silver core-mesoporous silica shell nanocapsules (Ag@MSNs), and then, a cationic antibacterial polymer, quaternary ammonium polyethyleneimine (QPEI), was used to modify Ag@MSNs for improving their surface potential and antibacterial activities. The results showed that the obtained Ag@MSN-QPEI exhibited a high positive surface potential (+39.6 mV) and a strong electrostatic attraction with Pseudomonas syringae pv. lachrymans cells in coculture, resulting in an excellent bacterial cell-targeting effect. At the same concentration, Ag@MSN-QPEI exhibited less silver content (reducing the silver content of Ag@MSNs by 19%), higher antibacterial activities, and longer effective duration against Clavibacter michiganensis subsp. michiganensis (G+) and P. syringae pv. lachrymans (G-) than Ag@MSNs and QPEI alone. The excellent bacterial cell-targeting effect and synergistic antibacterial action combined with QPEI accounted for the significantly enhanced antibacterial activities of Ag@MSN-QPEI. Therefore, using a cationic antibacterial polymer to confer the bacterial cell-targeting effect and synergistic antibacterial action would be extended to other antimicrobial materials.


Assuntos
Compostos de Amônio , Nanopartículas Metálicas , Nanocápsulas , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Polietilenoimina , Dióxido de Silício , Prata/farmacologia
4.
J Agric Food Chem ; 69(8): 2382-2391, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33605718

RESUMO

Considering the severity of plant pathogen resistance toward commonly used agricultural microbicides, as well as the potential threats of agrichemicals to the eco-environment, there is a pressing need for antimicrobial approaches that are capable of inactivating pathogens efficiently without the risk of inducing resistances and harm. In this work, a porphyrin metal-organic framework (MOF) nanocomposite was constructed by incorporating 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin tetra(p-toluenesulfonate) (TMPyP) as a photosensitizer (PS) in the cage of a variant MOF (HKUST-1) to efficiently produce singlet oxygen (1O2) to inactivate plant pathogens under light irradiation. The results showed that the prepared PS@MOF had a loading rate of PS about 12% (w/w) and excellent and broad-spectrum photodynamic antimicrobial activity in vitro against three plant pathogenic fungi and two pathogenic bacteria. Moreover, PS@MOF showed outstanding control efficacy against Sclerotinia sclerotiorum on cucumber in the pot experiment. Allium cepa chromosome aberration assays and safety evaluation on cucumber and Chinese cabbage indicated that PS@MOF had no genotoxicity and was safe to plants. Thus, porphyrin MOF demonstrated a great potential as an alternative and efficient new microbicide for sustainable plant disease management.


Assuntos
Anti-Infecciosos , Estruturas Metalorgânicas , Porfirinas , Anti-Infecciosos/farmacologia , Ascomicetos , Gerenciamento Clínico , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia
5.
J Agric Food Chem ; 68(22): 6048-6057, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32392059

RESUMO

In this work, 12 novel herbicidal ionic liquids (HILs) based on acifluorfen were prepared by pairing with the fluorescent hydrazides or different alkyl chains for increasing activities and reducing negative impacts on the aquatic environment. The results showed that the fluorescence of coumarin hydrazide in the HILs was applied as the internal and supplementary light source to meet the requirement of light wavelength range of acifluorfen, which improved the phytotoxicity of acifluorfen to weeds by enhancing singlet oxygen generation with increased sunlight utilization. The herbicidal activities of HILs were related positively with the length of chain of cation under high light intensity and depended mainly on the fluorescence characteristic of the cation under low light intensity, and the double salt IL forms of acifluorfen containing coumarin hydrazide and n-hexadecyltrimethylammonium had enhanced efficacies against broadleaf weeds in the field. Compared with acifluorfen sodium, HILs had lower water solubility, better surface activity, weaker mobility in soils, and higher decomposition temperature. These results demonstrated that HILs containing different cations provided a wider scope for fine-tuning of the physicochemical and biological properties of herbicides and established a promising way for the development of environmentally friendly herbicidal formulations.


Assuntos
Herbicidas/química , Herbicidas/farmacologia , Líquidos Iônicos/química , Nitrobenzoatos/química , Nitrobenzoatos/farmacologia , Composição de Medicamentos , Fluorescência , Líquidos Iônicos/farmacologia , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/metabolismo , Plantas Daninhas/efeitos da radiação , Oxigênio Singlete/metabolismo , Solubilidade/efeitos da radiação , Luz Solar
6.
J Hazard Mater ; 389: 122075, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-31972522

RESUMO

It is highly desirable to construct stimuli-responsive nanocarriers for improving pesticides targeting and preventing the pesticides premature release. In this work, a novel redox and α-amylase dual stimuli-responsive pesticide delivery system was established by bonding functionalized starch with biodegradable disulfide-bond-bridged mesoporous silica nanoparticles which loaded with avermectin (avermectin@MSNs-ss-starch nanoparticles). The results demonstrated that the loading capacity of avermectin@MSNs-ss-starch nanoparticles for avermectin was approximately 9.3 %. The starch attached covalently on the mesoporous silica nanoparticles could protect avermectin from photodegradation and prevent premature release of active ingredient. Meanwhile, the coated starch and disulfide-bridged structure of nanoparticles could be decomposed and consequently release of the avermectin on demand when nanoparticles were metabolized by glutathione and α-amylase in insects. The bioactivity survey confirmed that avermectin@MSNs-ss-starch nanoparticles had a longer duration in controlling Plutella xylostella larvae compared to avermectin emulsifiable concentrate. In consideration of the superior insecticidal activity and free of toxic organic solvent, this target-specific pesticide release system has promising potential in pest management.


Assuntos
Portadores de Fármacos/química , Inseticidas/toxicidade , Ivermectina/análogos & derivados , Nanopartículas/química , Dióxido de Silício/química , Amido/química , Animais , Portadores de Fármacos/síntese química , Portadores de Fármacos/metabolismo , Portadores de Fármacos/efeitos da radiação , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Glutationa/metabolismo , Concentração de Íons de Hidrogênio , Inseticidas/efeitos da radiação , Ivermectina/efeitos da radiação , Ivermectina/toxicidade , Cinética , Luz , Mariposas/efeitos dos fármacos , Mariposas/enzimologia , Nanopartículas/efeitos da radiação , Oxirredução , Controle de Pragas/métodos , Porosidade , Dióxido de Silício/efeitos da radiação , Amido/metabolismo , Amido/efeitos da radiação , alfa-Amilases/metabolismo
7.
RSC Adv ; 10(36): 21222-21227, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35518721

RESUMO

Cabbage black rot caused by Xanthomonas campestris pv. campestris (Xcc) leads to decrease of the production of up to 70%. Copper biocides are widely used to control this disease because of their low-cost application and broad-spectrum antimicrobial activities. Extensive spraying of traditional copper biocides would cause undesirable effects on plants and the environment. In this work, a novel copper-based microbicide was prepared by binding copper with glycine in sodium hydroxide solution (Gly-Cu(OH)2 NPs) and characterized by inductively coupled plasma atomic emission spectroscopy, high-resolution transmission electron microscopy, Fourier transformation infrared spectroscopy, and dynamic light scattering. The results showed that the prepared Gly-Cu(OH)2 NPs had a mean diameter of 240 nm with copper content more than 25.0% and their antimicrobial efficacies against Xcc were significantly better than Kocide 3000 at 400-800 mg L-1 of copper after spraying for 14 days. The phytotoxicity tests under greenhouse conditions showed that Gly-Cu(OH)2 NPs were safer to plants than Kocide 3000 and obviously promoted the growth of plants, which led to the increase of fresh weights of Chinese cabbage and tomato seedlings by 6.34% and 3.88% respectively at a concentration of 800 mg L-1 of copper. As a novel copper-based microbicide, the Gly-Cu(OH)2 NPs can improve effective utilization of copper-based bactericides and reduce phytotoxicity to plants and would be a potential alternative for sustainable plant disease management.

8.
J Agric Food Chem ; 67(40): 11018-11024, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31512873

RESUMO

In this study, nine pyrimethanil ionic liquids (PILs) were synthesized through an acid-base reaction with nine naturally derived organic acid anions to improve the physicochemical properties and reduce the environmental adverse impacts. The PILs presented lower volatilization, higher photostability, better soil adsorption capacity, and improved fungicidal activity relative to pyrimethanil. When the length of the carbon chains in the anions was increased, the PILs showed better properties in terms of melting point, water solubility, volatility, and surface tension. The photostabilities and fungicidal activities of the PILs were significantly improved when cyclic compounds were used as the paired anion ions. With enhanced physicochemical properties and better fungicidal activity, PIL7 was selected as the best alternative to pyrimethanil. The intrinsic disadvantages of pyrimethanil could be surmounted using the system developed in the study; thus, ILs could have immense potential in the development of eco-friendly and efficient fungicides in the future.


Assuntos
Fungicidas Industriais/química , Líquidos Iônicos/química , Compostos Orgânicos/química , Pirimidinas/química , Adsorção , Ânions/química , Ânions/farmacologia , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Fungicidas Industriais/síntese química , Fungicidas Industriais/farmacologia , Líquidos Iônicos/farmacologia , Cinética , Compostos Orgânicos/farmacologia , Pirimidinas/farmacologia , Solo/química , Solubilidade , Volatilização
9.
Sci Total Environ ; 670: 606-612, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-30909038

RESUMO

Triflumizole, a broad-spectrum systemic fungicide, has been widely used for the management of fungal diseases in plants. However, rapid photolysis and high risk to the aquatic environment limit its application. Ionic liquid (IL) forms of active pharmaceutical ingredients are innovative and promising agents that can optimize the application of the starting chemicals through the selection, or functionalization of the counterions (cation or anion). In this study, triflumizole was paired with various natural organic acids to develop novel ILs for improving the physicochemical properties and reducing the toxicity to fish. The results showed that the obtained ILs had low surface tension and lipophilicity and could protect triflumizole against degradation under UV irradiation as well as exhibit more excellent biological activity against Botrytis cinerea than triflumizole. The IL forms of triflumizole reduced the dosage and frequency of this fungicide, accordingly minimized the negative effect on environment. The IL contained salicylic acid as anion decreased > 4-fold toxicity to adult zebrafish over TFM. The results reported here create new application possibilities for imidazole fungicides and offer some heuristic rules for the design of active pharmaceutical ingredients-ionic liquids.


Assuntos
Fungicidas Industriais/toxicidade , Imidazóis/toxicidade , Poluentes Químicos da Água/toxicidade , Poluição da Água/prevenção & controle , Ânions , Líquidos Iônicos
10.
Colloids Surf B Biointerfaces ; 178: 153-162, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30856584

RESUMO

Based on the specific binding between the receptors and ligands, novel targeted nanocapsules were prepared by using silica covalently bonded with dopamine to increase the insecticidal efficacy of λ-cyhalothrin. The targeted release mechanism of λ-cyhalothrin nanocapsules (NC) nanocapsules was verified by enzymatic analysis, fluorescent marking method and high performance liquid chromatograph. The results showed NC had uniform particle size (800 nm) and approximately 31% (w/w) loading efficiency of λ-cyhalothrin. The stability of λ-cyhalothrin in nanocapsuels was improved under different pH and temperature conditions. The NC showed sustainable release properties and the release kinetics mainly belonged to Fickian diffusion at all experimental conditions. Compared to λ-cyhalothrin emulsifiable concentrate and microcapsule suspension, the NC exhibited more excellent insecticidal activity. The micronucleus test indicated that NC significantly reduced the genotoxicity of λ-cyhalothrin to non-target organisms. This work offers a novel and efficient way to use targeted drug delivery system to improve the insecticidal activity, and may be extended to other pesticides in the future.


Assuntos
Dopamina/química , Nanocápsulas/química , Nitrilas/química , Piretrinas/química , Dióxido de Silício/química , Inseticidas/química
11.
J Agric Food Chem ; 66(40): 10362-10368, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30230823

RESUMO

Due to high volatility and water solubility, 2,4-dichlorophenoxyacetic acid (2,4-D) can easily enter into the atmosphere and water bodies by volatilization, drift, leaching, or runoff, which results in potential threats to the environment and human health. The physicochemical properties of pesticides can be regulated by preparing their ionic liquids. In this work, a series of dicationic ionic liquids (DILs) of 2,4-D were prepared to reduce its environmental risk and enhance herbicidal activity. The solubility, octanol-water partition coefficient, surface tension, and volatilization rate results of DILs showed that these properties could be optimized by choosing appropriate countercations. Compared to 2,4-D ammonium salt, DILs have lower volatility, water solubility, and surface tension as well as higher lipophilicity. Benefiting from optimized physicochemical properties, DILs HIL8-12 exhibited better herbicidal activity against three typical broadleaf weeds than 2,4-D ammonium salt, and their fresh weight inhibition rates increased by 2.74-46.84%. The safety assessment experiment indicated that DILs were safer to wheat than commercialized forms of 2,4-D. The DILs could reduce the environmental risk of 2,4-D caused by high volatility and water solubility and would be potential alternatives to its commercialized formulations.


Assuntos
Ácido 2,4-Diclorofenoxiacético/farmacologia , Herbicidas/farmacologia , Líquidos Iônicos/farmacologia , Ácido 2,4-Diclorofenoxiacético/química , Herbicidas/química , Líquidos Iônicos/química , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/crescimento & desenvolvimento , Solubilidade , Volatilização
12.
J Hazard Mater ; 358: 207-215, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29990808

RESUMO

The frequent use of traditional copper-based microbicides has led to the growing risk of toxicity to non-target organisms in the environment. In this work, nanosilica was conjugated with copper(II) complexes of L-glutamate (or glycine) to develop novel copper-based microbicides with good microbicidal activity, systemicity and desired safety to plant, and the obtained nanosilica-L-glutamate copper complexes (Silica-Glu-Cu) and nanosilica-glycine copper complexes (Silica-Gly-Cu) were characterized and evaluated by FT-IR, SEM, TEM, and XPS. The results showed that Silica-Glu-Cu and Silica-Gly-Cu exhibited satisfactory activities and long effective periods against Phytophthora capsica and Botrytis cinereal and could move upward and downward freely in cucumber seedlings. Moreover, Silica-Glu-Cu increased the fresh weights of cucumber and wheat seedlings by 0.4-6.4% at the concentrations of 50-200 mg/L of copper. Thus, the novel copper-based microbicides can reduce the frequency of using copper-based bactericides and phytotoxicity to plants.


Assuntos
Complexos de Coordenação/farmacologia , Cobre/química , Desinfetantes/farmacologia , Ácido Glutâmico/química , Glicina/química , Nanoestruturas/química , Dióxido de Silício/química , Botrytis/efeitos dos fármacos , Complexos de Coordenação/química , Desinfetantes/química , Estrutura Molecular , Phytophthora/efeitos dos fármacos
13.
Pestic Biochem Physiol ; 143: 8-13, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29183614

RESUMO

Phenazine-1-carboxylic acid (PCA) is a natural product that has been proven effective against a number of soil-borne fungal phytopathogens and registered for biofungicide against rice sheath blight in China. In order to improve the phloem mobility of phenazine-1-carboxylic acid (PCA), four PCA derivatives were designed and synthesized by conjugating PCA with l-alanine methyl ester, d-alanine methyl ester, l-alanine and d-alanine respectively. In vitro and planta bioassays results showed that conjugates L-PAM and D-PAM exhibited higher fungicidal activities against Rhizoctonia solani Kuhn than PCA while L-PA and D-PA were less active than PCA. The concentration of conjugates in Ricinus communis phloem sap was determined by HPLC. The results showed that only L-PA exhibited phloem mobility among these conjugates, and its concentration in Ricinus communis phloem sap increased with the increase of time (the maximum concentration was 12.69µM within 5h). However, the results of pot experiments showed that L-PA and other conjugates didn't exhibited the inhibition for the growth of Rhizoctonia solani Kuhn in the lower leaves after treatment in the upper leaves of rice seedlings. This may be due to the poor plant absorbility for them or their too little amount of accumulation in the lower leaves.


Assuntos
Fungicidas Industriais , Fusarium/efeitos dos fármacos , Floema/efeitos dos fármacos , Rhizoctonia/efeitos dos fármacos , Ricinus/efeitos dos fármacos , Alanina/análogos & derivados , Alanina/química , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/toxicidade , Fusarium/crescimento & desenvolvimento , Fenazinas/química , Fenazinas/farmacologia , Fenazinas/toxicidade , Floema/metabolismo , Rhizoctonia/crescimento & desenvolvimento , Ricinus/metabolismo , Ricinus/microbiologia , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/microbiologia
14.
Bioorg Med Chem Lett ; 27(9): 2010-2013, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28320617

RESUMO

Phenazine-1-carboxylic acid (PCA) as a natural product widely exists in microbial metabolites of Pseudomonads and Streptomycetes and has been registered for the fungicide against rice sheath blight in China. To find higher fungicidal activities compounds and study the effects on fungicidal activities after changing the carboxyl group of PCA, we synthesized a series of PCA derivatives by modifying the carboxyl group of PCA and their structures were confirmed by 1H NMR and HRMS. Most compounds exhibited significant fungicidal activities in vitro. In particular, compound 6 exhibited inhibition effect against Rhizoctonia solani with EC50 values of 4.35mg/L and compound 3b exhibited effect against Fusarium graminearum with EC50 values of 8.30mg/L, compared to the positive control PCA with its EC50 values of 7.88mg/L (Rhizoctonia solani) and 127.28mg/L (Fusarium graminearum), respectively. The results indicated that the carboxyl group of PCA could be modified to be amide group, acylhydrazine group, ester group, methyl, hydroxymethyl, chloromethyl and ether group etc. And appropriate modifications on carboxyl group of PCA were useful to extend the fungicidal scope.


Assuntos
Fungicidas Industriais/química , Fungicidas Industriais/toxicidade , Fusarium/efeitos dos fármacos , Doenças das Plantas/prevenção & controle , Rhizoctonia/efeitos dos fármacos , Fungicidas Industriais/síntese química , Oryza/microbiologia , Fenazinas/síntese química , Fenazinas/química , Fenazinas/toxicidade , Doenças das Plantas/microbiologia , Relação Estrutura-Atividade , Triticum/microbiologia
15.
Bioorg Med Chem Lett ; 26(22): 5384-5386, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27780636

RESUMO

Phenazine-1-carboxylic acid (PCA) is a natural product that has been characterized by special chemical structures, interesting bioactivities and has been registered for fungicide against rice sheath blight in China. Phloem mobility is of great significance to long-distance transport of systemic pesticides in plants. In order to improve the phloem mobility and bioactivities of PCA, seventeen PCA-amino acid ester conjugates were designed and synthesized by conjugating PCA with different amino-acid esters. The conjugates were evaluated for their fungicidal activities against Rhizoctonia solani Kuhn and their phloem mobility was determined by HPLC. Results showed that conjugates a, b, c, d, e, l, m and p (EC50 values between 5.35 and 18.85µg/mL) were more active than PCA (25.66µg/mL). In particular, conjugates l and m exhibited the best fungicidal activities against Rhizoctonia solani Kuhn (EC50 values of them were 6.47µg/mL and 5.35µg/mL respectively). All these conjugates didn't have phloem mobility.


Assuntos
Aminoácidos/síntese química , Fungicidas Industriais/síntese química , Rhizoctonia/efeitos dos fármacos , Aminoácidos/química , Aminoácidos/metabolismo , Esterificação , Fungicidas Industriais/química , Fungicidas Industriais/metabolismo , Oryza/microbiologia , Fenazinas/síntese química , Fenazinas/química , Fenazinas/metabolismo , Floema/efeitos dos fármacos , Floema/metabolismo , Floema/microbiologia , Doenças das Plantas/microbiologia , Rhizoctonia/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...