Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732409

RESUMO

The tree peony, a novel woody oil crop extensively cultivated in China, necessitates further investigation into artificial pollination technology to enhance seed yield. In this study, we conducted artificial pollination experiments with 6-year-old Paeonia ostii 'Feng Dan' seedings for suitable pollen sources, pollen concentration, pollination timing, and pollination frequency. By evaluating seed yields, active ingredients, and oil quality, we derived the following significant conclusions. Firstly, compared to natural pollination, artificial pollination could significantly increase the fruit diameter by 13.94-27.58%, seed yields by 35.17-58.99%, and oil content by 6.45-7.52% in tree peonies. In active ingredients, seeds produced by pollen from Hantai County significantly enhanced starch content (by 48.64%), total phenols (by 41.18%) and antioxidant capacity (by 54.39%). In oil quality, seeds produced by pollen from Heyang County exhibited the highest α-linolenic acid and total fatty acid content with enhancements of 1.68%, 7.41%, and 8.48%. Secondly, hand pollination with pure pollen significantly increased seed yield by 58.99%, total phenol content by 40.97%, antioxidant capacity by 54.39%, and oil content by 1.53% compared to natural pollination. Thirdly, pollination at 2/3 bloom range significantly increased seed number by 63.08% and yield by 45.61% compared to natural pollination. Finally, the effect of one, two, and three pollination events had no difference in seed yield. So, to summarize, applying a 100% concentration of allochthonous pollen once is recommended when the bloom range is more than two thirds.

2.
NPJ Aging ; 10(1): 24, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704365

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by the deposition of ß-amyloid (Aß) plaques. Aß is generated from the cleavage of the amyloid precursor protein by ß and γ-secretases and cleared by neuroglial cells mediated autophagy. The imbalance of the intracellular Aß generation and clearance is the causative factor for AD pathogenesis. However, the exact underlying molecular mechanisms remain unclear. Our previous study reported that EPB41L4A-AS1 is an aging-related long non-coding RNA (lncRNA) that is repressed in patients with AD. In this study, we found that downregulated EPB41L4A-AS1 in AD inhibited neuroglial cells mediated-Aß clearance by decreasing the expression levels of multiple autophagy-related genes. We found that EPB41L4A-AS1 regulates the expression of general control of amino acid synthesis 5-like 2, an important histone acetyltransferase, thus affecting histone acetylation, crotonylation, and lactylation near the transcription start site of autophagy-related genes, ultimately influencing their transcription. Collectively, this study reveals EPB41L4A-AS1 as an AD-related lncRNA via mediating Aß clearance and provides insights into the epigenetic regulatory mechanism of EPB41L4A-AS1 in gene expression and AD pathogenesis.

3.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791503

RESUMO

Paeonia ostii is an important economic oil and medicinal crop. Its anthers are often used to make tea in China with beneficial effects on human health. However, the metabolite profiles, as well as potential biological activities of P. ostii anthers and the pollen within anthers have not been systematically analyzed, which hinders the improvement of P. ostii utilization. With comprehensive untargeted metabolomic analysis using UPLC-QTOF-MS, we identified a total of 105 metabolites in anthers and pollen, mainly including phenylpropanoids, polyketides, organic acids, benzenoids, lipids, and organic oxygen compounds. Multivariate statistical analysis revealed the metabolite differences between anthers and pollen, with higher carbohydrates and flavonoids content in pollen and higher phenolic content in anthers. Meanwhile, both anthers and pollen extracts exhibited antioxidant activity, antibacterial activity, α-glucosidase and α-amylase inhibitory activity. In general, the anther stage of S4 showed the highest biological activity among all samples. This study illuminated the metabolites and biological activities of anthers and pollen of P. ostii, which supports the further utilization of them.


Assuntos
Metabolômica , Paeonia , Pólen , Pólen/metabolismo , Pólen/química , Paeonia/metabolismo , Paeonia/química , Cromatografia Líquida de Alta Pressão/métodos , Metabolômica/métodos , Antioxidantes/metabolismo , Metaboloma , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Flores/metabolismo , Flavonoides/metabolismo , Flavonoides/análise , Espectrometria de Massas/métodos
4.
Plant Physiol ; 195(1): 745-761, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38365221

RESUMO

α-Linolenic acid (ALA), an essential fatty acid (FA) for human health, serves as the precursor of 2 nutritional benefits, docosahexaenoic acid and eicosapentaenoic acid, and can only be obtained from plant foods. We previously found that phospholipid:diacylglycerol acyltransferase 2 (PrPDAT2) derived from ALA-rich tree peony (Paeonia rockii) can promote seed ALA accumulation. However, the regulatory mechanism underlying its promoting effect on ALA accumulation remains unknown. Here, we revealed a tree peony dehydration-responsive element binding transcription factor, PrDREB2D, as an upstream regulator of PrPDAT2, which is involved in regulating seed ALA accumulation. Our findings demonstrated that PrDREB2D serves as a nucleus-localized transcriptional activator that directly activates PrPDAT2 expression. PrDREB2D altered the FA composition in transient overexpression Nicotiana benthamiana leaves and stable transgenic Arabidopsis (Arabidopsis thaliana) seeds. Repressing PrDREB2D expression in P. rockii resulted in decreased PrPDAT2 expression and ALA accumulation. In addition, PrDREB2D strengthened its regulation of ALA accumulation by recruiting the cofactor ABA-response element binding factor PrABF2b. Collectively, the study findings provide insights into the mechanism of seed ALA accumulation and avenues for enhancing ALA yield via biotechnological manipulation.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Paeonia , Proteínas de Plantas , Plantas Geneticamente Modificadas , Sementes , Fatores de Transcrição , Ácido alfa-Linolênico , Sementes/metabolismo , Sementes/genética , Ácido alfa-Linolênico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Paeonia/genética , Paeonia/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
5.
Hortic Res ; 10(4): uhad022, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37786859

RESUMO

Flower senescence is commonly enhanced by the endogenous hormone ethylene and suppressed by the gibberellins (GAs) in plants. However, the detailed mechanisms for the antagonism of these hormones during flower senescence remain elusive. In this study, we characterized one up-regulated gene PhOBF1, belonging to the basic leucine zipper transcription factor family, in senescing petals of petunia (Petunia hybrida). Exogenous treatments with ethylene and GA3 provoked a dramatic increase in PhOBF1 transcripts. Compared with wild-type plants, PhOBF1-RNAi transgenic petunia plants exhibited shortened flower longevity, while overexpression of PhOBF1 resulted in delayed flower senescence. Transcript abundances of two senescence-related genes PhSAG12 and PhSAG29 were higher in PhOBF1-silenced plants but lower in PhOBF1-overexpressing plants. Silencing and overexpression of PhOBF1 affected expression levels of a few genes involved in the GA biosynthesis and signaling pathways, as well as accumulation levels of bioactive GAs GA1 and GA3. Application of GA3 restored the accelerated petal senescence to normal levels in PhOBF1-RNAi transgenic petunia lines, and reduced ethylene release and transcription of three ethylene biosynthetic genes PhACO1, PhACS1, and PhACS2. Moreover, PhOBF1 was observed to specifically bind to the PhGA20ox3 promoter containing a G-box motif. Transient silencing of PhGA20ox3 in petunia plants through tobacco rattle virus-based virus-induced gene silencing method led to accelerated corolla senescence. Our results suggest that PhOBF1 functions as a negative regulator of ethylene-mediated flower senescence by modulating the GA production.

6.
Hortic Res ; 10(7): uhad106, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37577394

RESUMO

Tree peony (Paeonia rockii) is an excellent woody oilseed crop, known for its high α-linolenic acid (ALA, ~45%) content, which is of great value for human health. However, the mechanisms underlying this high-level ALA accumulation in tree peony seeds are poorly understood. In this study, we evaluated the dynamic changes in the lipidomic profile of P. rockii seeds during development. A total of 760 lipid molecules were identified in P. rockii seeds; triacylglycerol (TAG) lipid molecules showed the highest abundance and diversity, both increasing during seed development. Particularly, ALA was the predominant fatty acid at the TAG sn-3 position. We further characterized two diacylglycerol acyltransferase (DGAT) genes and three phospholipid:diacylglycerol acyltransferase (PDAT) genes involved in the transfer of fatty acids to the TAG sn-3 position. Gene expression and subcellular localization analyses suggested that PrDGATs and PrPDATs may function as endoplasmic reticulum-localized proteins in seed TAG biosynthesis. In vitro functional complementation analysis showed different substrate specificities, with PrPDAT2 having a specific preference for ALA. Multiple biological assays demonstrated that PrDGAT1, PrDGAT2, PrPDAT1-2, and PrPDAT2 promote oil synthesis. Specifically, PrPDAT2 leads to preferential ALA in the oil. Our findings provide novel functional evidence of the roles of PrDGAT1 and PrPDAT2, which are potential targets for increasing the ALA yield in tree peony and other oilseed crops.

7.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37445786

RESUMO

Tree peonies (Paeonia Section Moutan)-including nine wild species, which belong to subsections Vaginatae and Delavayanae-are economically important plants with ornamental, nutritional, and medicinal applications. In this study, for the first time, we determined the bioactive components and antioxidant activities and antibacterial activities of the newly grown leaves of nine wild tree peony species (WTPS). A total of 276 bioactive components were identified through non-targeted metabolomics; more than 80% of the 276 metabolites identified are terpenoids and flavonoids. A total of 42 differential metabolites were quantitatively determined. The main differential metabolites were Paeoniflorin, Luteoloside, Hyperin, Apigenin-7-glucoside, Rhoifolin, and Cantharidin. Such a high terpenoid and flavonoid content of the leaf extracts renders them as species with strong antibacterial capacities, and most of the bacteria tested showed greater sensitivity derived from the members of subsection Vaginatae than those of subsection Delavayanae. All WTPS have significant antioxidant activity; this activity is attributed to high levels of the total phenolic content (TPC) and total flavonoid content (TFC), of which, among the nine WTPS, P. lutea has the strongest antioxidant capacity. Our results provided a theoretical basis for the in-deep application of tree peony leaves for food, medical, and pharmaceutical industries.


Assuntos
Antioxidantes , Paeonia , Antioxidantes/farmacologia , Flavonoides/farmacologia , Extratos Vegetais/farmacologia , Antibacterianos/farmacologia , Terpenos , Folhas de Planta
8.
Plants (Basel) ; 12(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37447022

RESUMO

Paeonia ostii is an important woody oil crop mainly cross-pollinated. However, the low yield has become an important factor restricting the industrial development of P. ostii. Cross-pollination has become one of the important measures to increase the seed yield. Therefore, conservation of pollen with high vitality is crucial to ensure successful pollination of P. ostii. In this study, we found an effective methodological system to assess the viability, ability to germinate, and optimal storage conditions of P. ostii pollen grains. The optimal medium in vitro was 50 g/L sucrose, 100 mg/L boric acid, 50 g/L PEG6000, 100 mg/L potassium nitrate, 300 mg/L calcium nitrate, and 200 mg/L magnesium sulfate at pH 5.4. Optimal germination condition in vitro was achieved at 25 °C for 120 min, allowing easy observation of the germination percentage and length of the pollen tubes. In addition, the viability of pollen grains was assessed by comparing nine staining methods. Among them, MTT, TTC, benzidine-H2O2, and FDA were effective to distinguish between viable and non-viable pollen, and the results of the FDA staining method were similar to the pollen germination percentage in vitro. After evaluation of pollen storage, thawing and rehydration experiments showed that thawing at 4 °C for 30 min and rehydration at 25 °C for 30 min increased the germination percentage of pollen grains stored at low temperatures. The low-temperature storage experiments showed that 4 °C was suitable for short-term storage of P. ostii pollen grains, while -80 °C was suitable for long-term storage. This is the first report on the in vitro germination, viability tests, and storage of P. ostii pollen grains, which will provide useful information for P. ostii germplasm conservation and artificial pollination.

9.
Plant J ; 115(2): 546-562, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37058107

RESUMO

Seed oil not only provides energy for seed postgermination development but also provides essential nutrients and raw materials for human products. However, the transcriptional regulatory mechanism controlling seed oil accumulation remains largely unknown. Tree peony (Paeonia rockii) is an emerging woody oilseed crop in China that is known for its high-quality seed oil. Here, we revealed that a tree peony nuclear factor Y transcription factor, PrNF-YC2, is expressed predominantly in developing seeds and functions as an essential positive regulator of seed oil accumulation. PrNF-YC2 promoted oil accumulation in both transient ectopic overexpression Nicotiana benthamiana leaves and stable transgenic Arabidopsis thaliana seeds, globally upregulating the expression of genes involved in oil accumulation. In contrast, PrNF-YC2-silenced tree peony leaves using a virus-induced gene silencing system showed reduced oil content and expression of oil synthesis-related genes, including four master positive regulators contributing to oil accumulation, namely, LEAFY COTYLEDON1 (LEC1), ABSCISIC ACID INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and WRINKLED1 (WRI1). We demonstrated that PrNF-YC2 directly activates PrLEC1 and PrABI3 alone and indirectly activates PrFUS3 and PrWRI1 by interacting with PrLEC1. Moreover, interaction with PrLEC1 also enhances the activation capacity of PrNF-YC2. The activation of these four master positive regulators by PrNF-YC2 triggered the upregulation of numerous oil synthesis-related genes, thus promoting oil accumulation. These findings provide new insights into the regulatory mechanism of seed oil accumulation and manipulation of PrNF-YC2 may be beneficial for enhancing oil yield in tree peony and other oilseed crops.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Paeonia , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Paeonia/genética , Paeonia/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Sementes/metabolismo , Óleos de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
10.
J Am Chem Soc ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36706380

RESUMO

Two-dimensional (2D) transition-metal borides (TMBs) are especially expected to exhibit excellent performance in various fields among electricity, superconductivity, magnetism, mechanics, biotechnology, battery, and catalysis. However, the synthesis of ultrathin TMB single crystals with ultrahigh phase purity was deemed extremely challenging and has not been realized till date. That is because TMBs have the most kinds of crystal structures among inorganic compounds, which possess generous phase structures with similar formation energies compared with other transition-metal compounds, attributing to the metalloid and electron-deficient characteristics of boron. Herein, for the first time, we demonstrate a chemical potential-modulated strategy to realize the precise synthesis of various ultrahigh-phase-purity (approximately 100%) ultrathin TMB single crystals, and the precision in the phase formation energy can reach as low as 0.01 eV per atom. The ultrathin MoB2 single crystals exhibit an ultrahigh Young's modulus of 517 GPa compared to other 2D materials. Our work establishes a chemical potential-modulated strategy to synthesize ultrathin single crystals with ultrahigh phase purity, especially those with similar formation energies, and undoubtedly provides excellent platforms for their extensive research and applications.

11.
Molecules ; 29(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38202728

RESUMO

Aromatic plants of the family Lamiaceae, especially of the genus Thymus, have promising antioxidant applications in pharmacology, medicine, food, cosmetology, and aromatherapy. Hydrosols (HDs) were extracted by hydrodistillation from seven species of Lamiaceae, including Thymus vulgaris, Thymus mongolicus, Mentha × piperita, Melissa officinalis, Rosmarinus officinali, Salvia elegans, and Leonurus artemisia. In total, 369 volatile components were determined and analyzed by gas chromatography-mass spectrometry (GC-MS). Among them, alcohols (2.86-28.48%), ethers (2.46-10.69%), and phenols (0.11-21.78%) constituted a large proportion, mainly linalool (0.28-19.27%), eucalyptol (0.16-6.97%), thymol (0-19.54%), and carvacrol (0-26.82%). Multivariate statistical analyses were performed and 27 differential metabolites were screened. Three different methods (ABTS+•, DPPH•, and FRAP) were used to determine the in vitro antioxidant activity of seven HDs. Thymus vulgaris hydrosols (Tv HDs) and Thymus mongolicus hydrosols (Tm HDs) had the strongest antioxidant activity and their stronger antioxidant capacity was related to their high levels of phenolic constituents, mainly thymol. The antioxidant activity of the other five Lamiaceae HDs was associated with their high alcohol (mainly linalool and eucalyptol) content, and the alcohol constituents may synergistically affect their antioxidant capacity. Therefore, the present study suggests that Lamiaceae plants can be utilized as antioxidant products or antioxidants in different industrial sectors including pharmaceuticals, food, cosmetics, and agrochemicals.


Assuntos
Monoterpenos Acíclicos , Salvia , Thymus (Planta) , Antioxidantes/farmacologia , Eucaliptol , Timol/farmacologia , Mentha piperita
12.
Front Plant Sci ; 13: 872442, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712588

RESUMO

Herbaceous peony is an important cut-flower plant cultivated worldwide, but its short vase life substantially restricts its economic value. It is well established that endogenous hormones regulate the senescence process, but their molecular mechanism in flower senescence remains unclear. Here, we isolated a MYB transcription factor gene, PlMYB308, from herbaceous peony flowers, based on transcriptome data. Quantitative real-time PCR analysis showed that PlMYB308 is strongly up-regulated in senescing petals, and its expression was induced by abscisic acid or ethylene and reduced by gibberellin in petals. Treatment with abscisic acid or ethylene accelerated herbaceous peony petal senescence, and gibberellin delayed the process. PlMYB308 silencing delayed peony flower senescence and dramatically increased gibberellin, but reduced ethylene and abscisic acid levels in petals. PlMYB308 ectopic overexpression in tobacco accelerated flower senescence and reduced gibberellin, but increased ethylene and abscisic acid accumulation. Correspondingly, five endogenous hormone biosynthetic genes showed variable expression levels in petals after PlMYB308 silencing or overexpression. A dual-luciferase assay and yeast one-hybrid analysis showed that PlMYB308 specifically binds the PlACO1 promoter. Moreover, treatment with ethylene and 1-MCP can accelerate PlMYB308 silencing-reduced senescence and delay PlMYB308- overexpression-induced senescence. We also found that PlACO1 silencing delayed senescence in herbaceous peony petals. Taken together, our results suggest that the PlMYB308-PlACO1 regulatory checkpoints positively mediate the production of ethylene, and thus contribute to senescence in herbaceous peony flowers.

13.
Metabolites ; 12(4)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35448513

RESUMO

Gallotannins (GTs) are a series of hydrolyzable tannins with multiple health-promoting effects. In this study, an integrated liquid chromatography tandem mass spectrometry (LC-MS/MS) strategy was developed for unveiling the spatial distribution pattern of GTs in the emerging oilseed crops Paeonia rockii and P. ostii. According to the fragmentation behavior of the representative GT (1,2,3,4,6-penta-O-galloyl-ß-D-glucose, PGG), the diagnostic neutral loss (NL) of 170 Da was chosen for the non-targeted screening of GT precursors. Simultaneously, the tandem mass spectrometry spectrum (MS/MS) information was acquired through an enhanced product ion (EPI) scan. Nine major GTs were identified in tree peony. To quantify the targeted GTs in different tissues of tree peony, we established a multiple reaction monitoring (MRM)-enhanced product ion (EPI)-based pseudo-targeted approach under the information-dependent acquisition (IDA) mode. The quantitative results show that the GT compounds were ubiquitous in tree peony plants with diverse structures. The typical GT PGG was mainly distributed in roots, leaves, and petals. This strategy can also be utilized for metabolite characterization and quantification in other substrates.

15.
Small ; 18(9): e2106341, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34908232

RESUMO

Germanium, the prime applied semiconductor, is widely used in solid-state electronics and photoelectronics. Unfortunately, since the 3D diamond-like structure with strong covalent bonds impedes the 2D anisotropic growth, only the examples of ultrathin Ge along the (111) plane have been investigated, much less to the controllable synthesis along another crystal surface. Meanwhile, Ge(111) flakes are limited in semiconductor applications because of their gapless property. Here, ultrathin Ge(110) single crystal is synthesized with semiconductive property via gallium-associated self-limiting growth. The obtained ultrathin Ge(110) single crystal exhibits anisotropic honeycomb structure, uniformly incremental lattice, wide tunable direct-bandgap, blue-shifted photoluminescence emission, and unique phonon modes, which are consistent with the previous theoretical predictions. It also confirms excellent second harmonic generation and high hole mobility of 724 cm2 V-1 s-1 . The realization of ultrathin Ge(110) single crystal will provide an excellent candidate for application in electronics and optoelectronics.

16.
Front Plant Sci ; 12: 796181, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956296

RESUMO

In many higher plants, seed oil accumulation is governed by complex multilevel regulatory networks including transcriptional regulation, which primarily affects fatty acid biosynthesis. Tree peony (Paeonia rockii), a perennial deciduous shrub endemic to China is notable for its seed oil that is abundant in unsaturated fatty acids. We discovered that a tree peony trihelix transcription factor, PrASIL1, localized in the nucleus, is expressed predominantly in developing seeds during maturation. Ectopic overexpression of PrASIL1 in Nicotiana benthamiana leaf tissue and Arabidopsis thaliana seeds significantly reduced total fatty acids and altered the fatty acid composition. These changes were in turn associated with the decreased expression of multitudinous genes involved in plastidial fatty acid synthesis and oil accumulation. Thus, we inferred that PrASIL1 is a critical transcription factor that represses oil accumulation by down-regulating numerous key genes during seed oil biosynthesis. In contrary, up-regulation of oil biosynthesis genes and a significant increase in total lipids and several major fatty acids were observed in PrASIL1-silenced tree peony leaves. Together, these results provide insights into the role of trihelix transcription factor PrASIL1 in controlling seed oil accumulation. PrASIL1 can be targeted potentially for oil enhancement in tree peony and other crops through gene manipulation.

17.
Hortic Res ; 8(1): 235, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34719694

RESUMO

Tree peony (Paeonia suffruticosa Andr.) is a popular ornamental plant in China due to its showy and colorful flowers. However, yellow-colored flowers are rare in both wild species and domesticated cultivars. The molecular mechanisms underlying yellow pigmentation remain poorly understood. Here, petal tissues of two tree peony cultivars, "High Noon" (yellow flowers) and "Roufurong" (purple-red flowers), were sampled at five developmental stages (S1-S5) from early flower buds to full blooms. Five petal color indices (brightness, redness, yellowness, chroma, and hue angle) and the contents of ten different flavonoids were determined. Compared to "Roufurong," which accumulated abundant anthocyanins at S3-S5, the yellow-colored "High Noon" displayed relatively higher contents of tetrahydroxychalcone (THC), flavones, and flavonols but no anthocyanin production. The contents of THC, flavones, and flavonols in "High Noon" peaked at S3 and dropped gradually as the flower bloomed, consistent with the color index patterns. Furthermore, RNA-seq analyses at S3 showed that structural genes such as PsC4Hs, PsDFRs, and PsUFGTs in the flavonoid biosynthesis pathway were downregulated in "High Noon," whereas most PsFLSs, PsF3Hs, and PsF3'Hs were upregulated. Five transcription factor (TF) genes related to flavonoid biosynthesis were also upregulated in "High Noon." One of these TFs, PsMYB111, was overexpressed in tobacco, which led to increased flavonols but decreased anthocyanins. Dual-luciferase assays further confirmed that PsMYB111 upregulated PsFLS. These results improve our understanding of yellow pigmentation in tree peony and provide a guide for future molecular-assisted breeding experiments in tree peony with novel flower colors.

18.
Small ; 17(45): e2103442, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34569140

RESUMO

Surface-enhanced Raman scattering (SERS) based on 2D semiconductors has been rapidly developed due to their chemical stability and molecule-specific SERS activity. High signal reproducibility is urgently required towards practical SERS applications. 2D gallium nitride (GaN) with highly polar Ga-N bonds enables strong dipole-dipole interactions with the probe molecules, and abundant DOS (density of states) near its Fermi level increases the intermolecular charge transfer probability, making it a suitable SERS substrate. Herein, 2D micrometer-sized GaN crystals are demonstrated to be sensitive SERS platforms with excellent signal reproducibility and stability. Strong dipole-dipole interaction between the dye molecule and 2D GaN enhances the molecular polarizability. Furthermore, 2D GaN benefits its SERS enhancement by the combination of increased DOS and more efficient charge transfer resonances when compared with its bulk counterpart.


Assuntos
Semicondutores , Análise Espectral Raman , Gálio , Reprodutibilidade dos Testes
19.
Org Biomol Chem ; 19(39): 8554-8558, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34557883

RESUMO

A concise and environmentally friendly protocol was developed for the synthesis of 6-phenylbenzo[h]quinolines. 6-Phenylbenzo[h]quinolines were obtained in good yields via irradiation of (E)-2-phenyl-3-styrylpyridines with a 254 nm UV light (64 W) in EtOH under an argon atmosphere in the presence of TFA. The reaction is a dehydrogenative annulation reaction that proceeds through 6π-electrocyclization, a [1,5]-H shift, 1,3-enamine tautomerization, and elimination of a hydrogen molecule to afford 6-phenylbenzo[h]quinolines. The described protocol not only avoids the usage of a transition metal catalyst and an oxidant but also has the advantages of high atom efficiency and mild reaction conditions.

20.
Food Res Int ; 148: 110609, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34507753

RESUMO

Tree peony seed, traditionally used for edible oil production, is rich in α-linolenic acid. However, little attention is given to the fruit by-products during seed oil production. The present work aimed to comprehensively investigate the phytochemical constituents and multiple biological activities of different parts of tree peony fruits harvested from Paeonia ostii and Paeonia rockii. 130 metabolites were rapidly identified through UPLC-Triple-TOF-MS on the basis of MS/MS molecular networking. Metabolite quantification was performed through the targeted approach of HPLC-ESI-QQQ-MS. Eight chemical markers were screened via principal component analysis (PCA) for distinguishing species and tissues. Interestingly, two dominant compounds, paeoniflorin and trans-resveratrol, are specially localized in seed kernel and seed coat, respectively. Unexpectedly, the extracts of fruit pod and seed coat showed significantly stronger antioxidant, antibacterial, and anti-neuroinflammatory activities than seed kernel from both P. ostii and P. rockii. Our work demonstrated that tree peony fruit is promising natural source of bioactive components and provided its potential utilization in food and pharmaceutical industries.


Assuntos
Paeonia , Frutas , Extratos Vegetais , Espectrometria de Massas em Tandem , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...