Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 306: 120589, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36746581

RESUMO

The emergence of multidrug-resistant (MDR) bacteria has made wound infection treatment difficult, calling for novel strategies for effective elimination of bacteria in wounds and promoting their recovery. Herein, we report a novel chitosan antibacterial sponge combining zinc oxide particles (ZnO) and the photosensitizer chlorin e6 (Ce6), named CS-ZnO/Ce6 sponge for combating multidrug-resistant bacteria and treating skin abscesses. The fabricated CS-ZnO/Ce6 sponge had porous structure with high porosity, conducive to absorbing the wound exudate. Meanwhile, the hemostatic property of this sponge enabled it to stop the continuous bleeding of the wound. Upon 660 nm light irradiation, the CS-ZnO/Ce6 sponge exhibited an instant photodynamic bactericidal effect against several typical MDR strains, and the presence of ZnO could continuously inhibit bacterial growth. In addition, local remedy of methicillin-resistant Staphylococcus aureus (MRSA)-infected mice with CS-ZnO/Ce6 sponge with light irradiation caused a potent immediate bacterial killing effect and prolonged bacteriostasis in mice with skin abscesses, leading to the rapid recovery of the wound. The biocompatibility of the CS-ZnO/Ce6 sponge in mice was also verified by histological examination of the main organs. Collectively, the CS-ZnO/Ce6 sponge with broad-spectrum antibacterial activity and long-term bacterial inhibition potential could be useful for treating microbial infections and accelerating wound healing.


Assuntos
Quitosana , Staphylococcus aureus Resistente à Meticilina , Óxido de Zinco , Animais , Camundongos , Quitosana/farmacologia , Quitosana/química , Óxido de Zinco/farmacologia , Abscesso/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Bactérias
2.
Medicine (Baltimore) ; 101(7): e28854, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35363185

RESUMO

ABSTRACT: The aim of the study was to investigate the influence of intrarenal RAS on the decrease of renal function in patients undergoing cardiac surgery with cardiopulmonary bypass. This observational study investigated the activation of intrarenal RAS in 24 patients with AKI after cardiac surgery with cardiopulmonary bypass. The activation of intrarenal RAS was determined by urinary angiotensinogen (uAGT), which was measured at 12 hours before surgery, 0 and12 hours after surgery. The results were compared with those of 21 patients without AKI after cardiac surgery with cardiopulmonary bypass. Clinical and laboratory data were collected. Compared with baseline, all patients with cardiac surgery had activation of intrarenal RAS at 0 and 12 hours after surgery. The activation of intrarenal RAS was found significantly higher at both 0 and 12 hours after surgery in AKI group versus non AKI group (6.18 ±â€Š1.93 ng/mL vs 3.49 ±â€Š1.71 ng/mL, 16.38 ±â€Š7.50 ng/mL vs 6.04 ±â€Š2.59 ng/mL, respectively). There was a positive correlation between the activation of RAS at 0 hour after surgery and the decrease of renal function at 48 hours after surgery (r = 0.654, P = .001). These findings suggest that uAGT might be a suitable biomarker for prediction of the occurrence and severity of AKI after cardiac surgery. Inhibition of intrarenal RAS activation might be one the path of future treatment for this type of disease.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Sistema Renina-Angiotensina , Biomarcadores/metabolismo , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Ponte Cardiopulmonar/efeitos adversos , Humanos , Rim
3.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35215269

RESUMO

With the merits of excellent efficacy, safety, and facile implementation, antibacterial photodynamic therapy (APDT) represents a promising means for treating bacterial infections. However, APDT shows an unsatisfactory efficacy in combating antibiotic-resistant Gram-negative bacteria due to their specific cell wall structure. In this work, we report a perfluorocarbon nanoemulsion (Ce6@FDC) used as a multifunctional nanocargo of photosensitizer and oxygen for sensitizing antibiotic-resistant Gram-negative bacteria to APDT. Ce6@FDC was fabricated via ultrasonic emulsification with good colloidal stability, efficient Ce6 and oxygen delivery, and excellent photodynamic activity. Meanwhile, Ce6@FDC could strongly bind with Gram-negative Acinetobacter baumannii (A. baumannii) and Escherichia coli (E. coli) via electrostatic interaction, thus leading to notable photodynamic bactericidal potency upon irradiation. In addition, oxygenated Ce6@FDC also exhibited a remarkable efficacy in eradicating Gram-negative bacteria biofilm, averaging five log units lower than the Ce6 group under identical conditions. Taken together, we demonstrate that photodynamic perfluorocarbon nanoemulsion with oxygen-delivery ability could effectively kill planktonic bacteria and remove biofilm, representing a novel strategy in fighting against antibiotic-resistant Gram-negative bacteria.

4.
Pharmaceutics ; 14(2)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35213986

RESUMO

Oxygen dependence and anabatic hypoxia are the major factors responsible for the poor outcome of photodynamic therapy (PDT) against cancer. Combining of PDT and hypoxia-activatable bioreductive therapy has achieved remarkably improved antitumor efficacy compared to single PDT modality. However, controllable release and activation of prodrug and safety profiles of nanocarrier are still challenging in the combined PDT/hypoxia-triggered bioreductive therapy. Herein, we developed a near infrared (NIR) light-decomposable nanomicelle, consisting of PEGylated cypate (pCy) and mPEG-polylactic acid (mPEG2k-PLA2k) for controllable delivery of hypoxia-activated bioreductive prodrug (tirapazamine, TPZ) (designated TPZ@pCy), for combating metastatic breast cancer via hypoxia-enhanced phototherapies. TPZ@pCy was prepared by facile nanoprecipitation method, with good colloidal stability, excellent photodynamic and photothermal potency, favorable light-decomposability and subsequent release and activation of TPZ under irradiation. In vitro experiments demonstrated that TPZ@pCy could be quickly internalized by breast cancer cells, leading to remarkable synergistic tumor cell-killing potential. Additionally, metastatic breast tumor-xenografted mice with systematic administration of TPZ@pCy showed notable tumor accumulation, promoting tumor ablation and lung metastasis inhibition with negligible toxicity upon NIR light illumination. Collectively, our study demonstrates that this versatile light-decomposable polymeric micelle with simultaneous delivery of photosensitizer and bioreductive agent could inhibit tumor growth as well as lung metastasis, representing a promising strategy for potent hypoxia-enhanced phototherapies for combating metastatic breast cancer.

5.
FASEB J ; 35(2): e21367, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33508160

RESUMO

Millions of human deaths occur annually due to chronic kidney disease, caused by diabetic kidney disease (DKD). Despite having effective drugs controlling the hyperglycemia and high blood pressure, the incidence of DKD is increasing, which indicates the need for the development of novel therapies to control DKD. In this article, we discussed the recent advancements in the basic innate immune mechanisms in renal tissues triggered under the diabetes environment, leading to the pathogenesis and progression of DKD. We also summarized the currently available innate immune molecules-targeting therapies tested against DKD in clinical and preclinical settings, and highlighted additional drug targets that could potentially be employed for the treatment of DKD. The improved understanding of the disease pathogenesis may open avenues for the development of novel therapies to rein in DKD, which consequently, can reduce morbidity and mortality in humans in the future.


Assuntos
Nefropatias Diabéticas/imunologia , Nefropatias Diabéticas/patologia , Imunidade Inata , Animais , Nefropatias Diabéticas/fisiopatologia , Nefropatias Diabéticas/terapia , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Terapia de Alvo Molecular/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA