Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Chemistry ; : e202401739, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954398

RESUMO

Metal halide materials have recently drawn increasing research interest for their excellent opto-electronic properties and structural diversity, but their resulting rigid structures render them brittle and poor formability during manufacturing. Here we demonstrate a thermoplastic luminant hybrid lead halide solid by integrating lead bromide complex into tri-n-octylphosphine oxide (TOPO) matrix. The construction of the hybrid materials can be achieved by a simple dissolution process, in which TOPO molecules act as the solvents and ligands to yield the monodispersed clusters. The combination of these functional units enables the near-room-temperature melt-processing of the materials into targeted geometry by simple molding or printing techniques, which offer possibilities for fluorescent writing inks with outstanding self-healing capacity to physical damage. The intermarriage between metal halide clusters with functional molecules expands the range of practical applications for hybrid metal halide materials.

2.
Environ Sci Technol ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037090

RESUMO

Catalytic elimination of halogenated volatile organic compound (HVOC) emissions was still a huge challenge through conventional catalytic combustion technology, such as the formation of halogenated byproducts and the destruction of the catalyst structure; hence, more efficient catalysts or a new route was eagerly desired. In this work, crystal phase- and defect-engineered CePO4 was rationally designed and presented abundant acid sites, moderate redox ability, and superior thermal/chemical stability; the halogenated byproduct-free and stable elimination of HVOCs was achieved especially in the presence of H2O. Hexagonal and defective CePO4 with more structural H2O and Brønsted/Lewis acid sites was more reactive and durable compared with monoclinic CePO4. Based on the phase and defect engineering of CePO4, in situ diffuse reflectance infrared Fourier transform spectra (DRIFTS), and kinetic isotope effect experiments, a hydrolysis-oxidation pathway characterized by the direct involvement of H2O was proposed. Initiatively, an external electric field (5 mA) significantly accelerated the elimination of HVOCs and even 90% conversion of dichloromethane could be obtained at 170 °C over hexagonal CePO4. The structure-performance-dependent relationships of the engineered CePO4 contributed to the rational design of efficient catalysts for HVOC elimination, and this pioneering work on external electric field-assisted catalytic hydrolysis-oxidation established an innovative HVOC elimination route.

3.
Biol Trace Elem Res ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937385

RESUMO

The α-Klotho is crucial for human health and longevity. However, the relationship between trace elements and α-Klotho levels needs further investigation. We aimed to explore the relationship between serum levels of selenium (Se), copper (Cu), and zinc (Zn), and serum α-Klotho levels. We analyzed 2138 samples from the 2011-2016 National Health and Nutrition Examination Survey, and the weighted linear regression, WQS, and qgcomp models were utilized to evaluate the effects of these elements on serum α-Klotho levels, individually and combined. A negative correlation was observed between serum Cu concentration and serum α-Klotho levels (ß = - 0.128, 95% CI - 0.196, - 0.059), with each increase in Cu concentration grade showing a gradual decrease in serum α-Klotho levels (Ptrend = 0.002). The WQS model exhibited a negative correlation between the combined effect of Se, Cu, and Zn and serum α-Klotho levels (ß = - 0.035, 95%CI - 0.060, - 0.010), consistently in males (ß = - 0.038 (- 0.059, - 0.017)) and in the 40-49 age group (ß = - 0.059, 95% CI - 0.119, - 0.012). The qgcomp model mirrored these findings, showing a negative correlation in the combined effect index of Se, Cu, and Zn with serum α-Klotho levels (ß = - 0.027, 95% CI - 0.047, - 0.006), consistent in females (ß = - 0.032, 95% CI - 0.061, - 0.004) and in individuals with BMI ≥ 25 (ß = - 0.030, 95% CI - 0.054, - 0.006), and in the 40-49 age group (ß = - 0.047, 95% CI - 0.088, - 0.006). Elevated serum Cu levels may be associated with lower serum α-Klotho levels. The combined effect of serum Se, Cu, and Zn shows a negative correlation with serum α-Klotho levels, with Cu contributing the most. Our findings provide significant insights into assessing the role of trace nutrients in maintaining human health.

4.
ACS Appl Mater Interfaces ; 16(27): 34936-34946, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38922846

RESUMO

Ni-based oxides are promising catalysts for CO2 methanation. However, Ni-based catalysts also have some unresolved issues and drawbacks in practical applications. The activity and selectivity of Ni-based catalysts in CO2 methanation at low temperatures still need to be improved. Here, Ni/ZrO2 nanofibers with high surface areas (up to 101.2 m2/g) were prepared by electrospinning methods. The Ni/ZrO2-ES (also named as 66Ni/ZrO2) catalyst showed excellent catalytic performance in CO2 methanation (the CO2 conversion = 81% and CH4 selectivity = 99% at 350 °C) and excellent stability for 100 h, which was better than most reported Ni/ZrO2 catalysts. However, the comparison sample Ni/ZrO2-CP prepared by the coprecipitation method had poor catalytic performance (the CO2 conversion = 54% and CH4 selectivity = 90% at 350 °C). Within 100 h, the CO2 conversion decreased to 30% and the CH4 selectivity decreased to 52%. Both EPR and O1S XPS confirmed that Ni/ZrO2 nanofibers can form more reactive oxygen species vacancies, and CO2-TPD confirmed that nanofibers had more CO2 adsorption sites compared with the control sample Ni/ZrO2-CP. In situ DRIFTS analysis showed that bidentate carbonate and monodentate carbonate were key intermediates in CO2 methanation. The catalytic performance of Ni/ZrO2 nanofiber catalysts would be attributed to higher dispersion of Ni species on the surface of nanofibers, high specific surface area (101.2 m2/g), more oxygen vacancies, more CO2 adsorption sites, and the synergistic effect between Ni nanoparticles and ZrO2 nanofibers. This work may inspire the rational design of Ni/ZrO2 nanofiber catalysts with rich oxygen vacancies for low-temperature CO2 methanation.

5.
J Mater Chem B ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38919121

RESUMO

A solvothermal method and the subsequent heat treatment process were developed to fabricate hollow ZnO particles with hierarchical pores on a large scale. The as-obtained hollow, porous ZnO microspheres with tunable sizes, high specific surface areas, pH sensitivity, antibacterial properties, and high adsorption capacities showed significant advantages for drug delivery. Sprayable hydrogels containing hollow, porous ZnO microspheres and curcumin nanoparticles (CNPs) were prepared to accelerate wound healing. The water-dispersed CNPs promoted both the migration of fibroblasts and angiogenesis and an aqueous solution of Pluronic F127 (a temperature-sensitive phase-change hydrogel material) was shown to be an effective choice for medical dressings. The experimental data suggest that hollow, porous ZnO microspheres can be loaded with additional CNPs to achieve continuous long-term therapeutic effects.

6.
Acta Pharm Sin B ; 14(5): 2298-2316, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38799629

RESUMO

Bacterial infection hampers wound repair by impeding the healing process. Concurrently, inflammation at the wound site triggers the production of reactive oxygen species (ROS), causing oxidative stress and damage to proteins and cells. This can lead to chronic wounds, posing severe risks. Therefore, eliminating bacterial infection and reducing ROS levels are crucial for effective wound healing. Nanozymes, possessing enzyme-like catalytic activity, can convert endogenous substances into highly toxic substances, such as ROS, to combat bacteria and biofilms without inducing drug resistance. However, the current nanozyme model with single enzyme activity falls short of meeting the complex requirements of antimicrobial therapy. Thus, developing nanozymes with multiple enzymatic activities is essential. Herein, we engineered a novel metalloenzyme called Ru-procyanidin nanoparticles (Ru-PC NPs) with diverse enzymatic activities to aid wound healing and combat bacterial infections. Under acidic conditions, due to their glutathione (GSH) depletion and peroxidase (POD)-like activity, Ru-PC NPs combined with H2O2 exhibit excellent antibacterial effects. However, in a neutral environment, the Ru-PC NPs, with catalase (CAT) activity, decompose H2O2 to O2, alleviating hypoxia and ensuring a sufficient oxygen supply. Furthermore, Ru-PC NPs possess exceptional antioxidant capacity through their superior superoxide dismutase (SOD) enzyme activity, effectively scavenging excess ROS and reactive nitrogen species (RNS) in a neutral environment. This maintains the balance of the antioxidant system and prevents inflammation. Ru-PC NPs also promote the polarization of macrophages from M1 to M2, facilitating wound healing. More importantly, Ru-PC NPs show good biosafety with negligible toxicity. In vivo wound infection models have confirmed the efficacy of Ru-PC NPs in inhibiting bacterial infection and promoting wound healing. The focus of this work highlights the quadruple enzymatic activity of Ru-PC NPs and its potential to reduce inflammation and promote bacteria-infected wound healing.

9.
Biol Trace Elem Res ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760610

RESUMO

The detrimental effects of fluoride on neurotoxicity have been widely recorded, yet the detailed mechanisms underlying these effects remain unclear. This study explores lysosomal iron metabolism in fluoride-related neurotoxicity, with a focus on the Steap3/TRPML1 axis. Utilizing sodium fluoride (NaF)-treated human neuroblastoma (SH-SY5Y) and mouse hippocampal neuron (HT22) cell lines, our research demonstrates that NaF enhances the accumulation of ferrous ions (Fe2+) in these cells, disrupting lysosomal iron metabolism through the Steap3/TRPML1 axis. Notably, NaF exposure upregulated ACSL4 and downregulated GPX4, accompanied by reduced glutathione (GSH) levels and superoxide dismutase (SOD) activity and increased malondialdehyde (MDA) levels. These changes indicate increased vulnerability to ferroptosis within neuronal cells. The iron chelator deferoxamine (DFO) mitigates this disruption. DFO binds to lysosomal Fe2+ and inhibits the Steap3/TRPML1 axis, restoring normal lysosomal iron metabolism, preventing lysosomal membrane permeabilization (LMP), and reducing neuronal cell ferroptosis. Our findings suggest that interference in lysosomal iron metabolism may mitigate fluoride-induced neurotoxicity, underscoring the critical role of the Steap3/TRPML1 axis in this pathological process.

10.
Materials (Basel) ; 17(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38730837

RESUMO

Since sheet metal exhibits significant anisotropy in processing and forming, which has a significant impact on its performance during processing, forming, and use, we explore the anisotropic behavior of materials in the forming process of sheet metal. The ability of the Yld2000-2d criterion to describe anisotropic behavior is analyzed, and its accuracy for characterization of the anisotropic behavior of metal plates is improved, based on which anisotropic behavior is predicted in three-dimensional space. Theoretical and experimental results on the anisotropy of sheet metal are compared, and two materials, 5754O aluminum alloy and DP980 steel plate, are tested and analyzed, and the anisotropic behaviors, such as three-point bending and cylindrical deep-drawing, are well predicted.

11.
J Multidiscip Healthc ; 17: 1819-1826, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680882

RESUMO

Objective: To investigate the utility of alpha-fetoprotein (AFP) and ultrasound in the diagnosis and prognosis of patients with hepatocellular liver cancer (HCC). Methods: Using retrospective convenience sampling, 401 patients with HCC who underwent transarterial chemoembolisation at the Department of Oncology of The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University between June 2015 and January 2020 were recruited and assigned to the case group. Simultaneously, patients matched to the case group in terms of gender and age but excluded for HCC were enrolled at a 1:1 ratio and classified as the control group. Relevant parameters were collected from both groups for comparison. Results: Both AFP levels and ultrasound results demonstrated diagnostic value for patients with HCC (P < 0.05). Their combined use exhibited the highest diagnostic accuracy for the cancer, with an area under the curve of 0.896 (95% confidence interval [CI]: 0.876, 0.923), a sensitivity of 67.65% and a specificity of 91.22%. In terms of overall survival (OS), statistically significant differences in the OS rates were observed between the low-AFP (L-AFP) group and high-AFP (H-AFP) group as well as between the low-tumour-diameter (LTD) group and high-tumour-diameter (HTD) group (81.31% vs 52.22% and 85.11% vs 63.41%, respectively; P < 0.05). Regarding the progression-free survival (PFS), significant differences in the PFS rates were also noted between the L-AFP and H-AFP groups and between the LTD and HTD groups (81.31% vs 52.22% and 85.11% vs 63.41%, respectively; P < 0.05). Conclusion: Ultrasound and AFP display notable distinctions when used in the diagnosis of HCC. The sensitivity of ultrasound as a standalone diagnostic tool surpasses that of AFP alone. However, their combined use results in much higher specificity than the use of either test individually. In addition, both techniques hold predictive value for patients' OS and PFS, enabling timely prognostic assessment.

12.
Environ Toxicol ; 39(7): 3779-3789, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38488668

RESUMO

Di-(2-ethylhexyl) phthalate (DEHP) is a commonly used plasticizer with known neurotoxic effects. However, the specific mechanism underlying this neurotoxicity remains unclear. This study aimed to investigate the role of lysosomal function and lysophagy in DEHP-induced neurotoxicity, with a particular focus on the regulatory role of Transcription factor EB (TFEB). To achieve this, we utilized in vitro models of DEHP-exposed SH-SY5Y cells and HT22 cells. Our findings revealed that DEHP exposure led to lysosomal damage and dysfunction. Moreover, we observed impaired autophagic degradation, characterized by elevated levels of LC3II and p62. DEHP treatment downregulated the expression of TFEB, GAL3, and TRIM16, while upregulating the expression of PARP. This led to the inhibition of GAL3/TRIM16 axis dependent lysophagy and ultimately excessive apoptosis in neuronal cells. Importantly, TFEB overexpression alleviated lysosomal dysfunction, activated lysophagy, and mitigated DEHP-induced apoptosis. Overall, our results suggest that DEHP induces not only lysosomal dysfunction, but also inhibits lysophagy through the suppression of GAL3/TRIM16 axis. Consequently, impaired clearance of damaged lysosomes occurs, culminating in neuronal apoptosis. Taken together, our findings highlight the critical role of TFEB in regulating lysophagy and lysosomal function. Furthermore, TFEB may serve as a potential therapeutic target for mitigating DEHP-induced neuronal toxicity.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Dietilexilftalato , Lisossomos , Ubiquitina-Proteína Ligases , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Humanos , Dietilexilftalato/toxicidade , Autofagia/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Apoptose/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Camundongos , Plastificantes/toxicidade , Linhagem Celular Tumoral , Linhagem Celular
13.
BMC Public Health ; 24(1): 832, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500093

RESUMO

Understanding the burden associated with occupational asbestos exposure on a global and regional scale is necessary to implement coordinated prevention and control strategies. By the GBD Study 2019, we conducted a comprehensive assessment of the non-communicable diseases burden attributable to occupational asbestos exposure. In 2019, 239,330 deaths and 4,189,000 disability-adjusted life years (DALYs) worldwide due to occupational asbestos exposure occurred. 1990-2019, deaths and DALYs attributed to occupational asbestos exposure increased by 65.65% and 43.66%, respectively. Age-standardized mortality rate (ASMR) and age-standardized DALYs rate (ASDR) decreased, with the most rapid declines in high Socio-Demographic Index (SDI) regions, with average annual percent change (AAPC) of - 1.05(95%CI: -1.2, -0.89) and -1.53(95%CI: -1.71, -1.36), respectively. Lung cancer, mesothelioma and ovarian cancer were the top three contributors to the increase in deaths and DALYs, accounting for more than 96%. AAPCs of ASMR and ASDR were positively associated with SDI. Global deaths from occupational asbestos exposure were predicted to increase and ASMR to decrease by 2035, mostly in males. Due consideration should be given to the susceptibility of the elderly, the lag of asbestos onset, and the regional differences, and constantly improve the prevention and control measures of occupational asbestos exposure and related diseases.


Assuntos
Amianto , Doenças não Transmissíveis , Exposição Ocupacional , Masculino , Humanos , Idoso , Anos de Vida Ajustados por Qualidade de Vida , Doenças não Transmissíveis/epidemiologia , Carga Global da Doença , Exposição Ocupacional/efeitos adversos , Amianto/toxicidade , Saúde Global
14.
Ecotoxicol Environ Saf ; 274: 116195, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479315

RESUMO

Fluoride is known to induce nephrotoxicity; however, the underlying mechanisms remain incompletely understood. Therefore, this study aims to explore the roles and mechanisms of lysosomal membrane permeabilization (LMP) and the GSDME/HMGB1 axis in fluoride-induced nephrotoxicity and the protective effects of rutin. Rutin, a naturally occurring flavonoid compound known for its antioxidative and anti-inflammatory properties, is primarily mediated by inhibiting oxidative stress and reducing proinflammatory markers. To that end, we established in vivo and in vitro models. In the in vivo study, rats were exposed to sodium fluoride (NaF) throughout pregnancy and up until 2 months after birth. In parallel, we employed in vitro models using HK-2 cells treated with NaF, n-acetyl-L-cysteine (NAC), or rutin. We assessed lysosomal permeability through immunofluorescence and analyzed relevant protein expression via western blotting. Our findings showed that NaF exposure increased ROS levels, resulting in enhanced LMP and increased cathepsin B (CTSB) and D (CTSD) expression. Furthermore, the exposure to NaF resulted in the upregulation of cleaved PARP1, cleaved caspase-3, GSDME-N, and HMGB1 expressions, indicating cell death and inflammation-induced renal damage. Rutin mitigates fluoride-induced nephrotoxicity by suppressing ROS-mediated LMP and the GSDME/HMGB1 axis, ultimately preventing fluoride-induced renal toxicity occurrence and development. In conclusion, our findings suggest that NaF induces renal damage through ROS-mediated activation of LMP and the GSDME/HMGB1 axis, leading to pyroptosis and inflammation. Rutin, a natural antioxidative and anti-inflammatory dietary supplement, offers a novel approach to prevent and treat fluoride-induced nephrotoxicity.


Assuntos
Fluoretos , Proteína HMGB1 , Nefropatias , Rutina , Animais , Ratos , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Caspase 3/metabolismo , Fluoretos/metabolismo , Fluoretos/toxicidade , Proteína HMGB1/efeitos dos fármacos , Proteína HMGB1/metabolismo , Inflamação/metabolismo , Lisossomos/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/toxicidade , Rutina/farmacologia , Fluoreto de Sódio/toxicidade , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Gasderminas/efeitos dos fármacos , Gasderminas/metabolismo
15.
Front Nutr ; 11: 1343772, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425484

RESUMO

Background and aims: Maternal malnutrition is a major global public health problem that can lead to serious maternal diseases. This study aimed to analyze and predict the spatio-temporal trends in the burden of maternal disorders attributable to malnutrition, and to provide a basis for scientific improvement of maternal malnutrition and targeted prevention of maternal disorders. Methods: Data on maternal disorders attributable to malnutrition, including number of deaths, disability-adjusted life years (DALYs), population attributable fractions (PAFs), age-standardized mortality rates (ASMRs), and age-standardized DALY rates (ASDRs) were obtained from the Global Burden of Disease Study 2019 to describe their epidemiological characteristics by age, region, year, and type of disease. A log-linear regression model was used to calculate the annual percentage change (AAPC) of ASMR or ASDR to reflect their temporal trends. Bayesian age-period-cohort model was used to predict the number of deaths and mortality rates to 2035. Results: Global number of deaths and DALYs for maternal disorders attributable to malnutrition declined by 42.35 and 41.61% from 1990 to 2019, with an AAPC of -3.09 (95% CI: -3.31, -2.88) and -2.98 (95% CI: -3.20, -2.77) for ASMR and ASDR, respectively. The burden was higher among younger pregnant women (20-29 years) in low and low-middle socio-demographic index (SDI) regions, whereas it was higher among older pregnant women (30-39 years) in high SDI region. Both ASMR and ASDR showed a significant decreasing trend with increasing SDI. Maternal hemorrhage had the highest burden of all diseases. Global deaths are predicted to decline from 42,350 in 2019 to 38,461 in 2035, with the ASMR declining from 1.08 (95% UI: 0.38, 1.79) to 0.89 (95% UI: 0.47, 1.31). Conclusion: Maternal malnutrition is improving globally, but in the context of the global food crisis, attention needs to be paid to malnutrition in low SDI regions, especially among young pregnant women, and corresponding measures need to be taken to effectively reduce the burden of disease.

16.
ACS Nano ; 18(2): 1449-1463, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38175529

RESUMO

The discovery of high-entropy oxides (HEOs) in 2015 has provided a family of potential solid catalysts, due to their tunable components, abundant defects or lattice distorts, excellent thermal stability (ΔG↓ = ΔH - TΔS↑), and so on. When facing the heterogeneous catalysis by HEOs, the micrometer bulky morphology and low surface areas (e.g., <10 m2 g-1) by traditional synthesis methods obstructed their way. In this work, an electrospinning method to fabricate HEO nanofibers with diameters of 50-100 nm was demonstrated. The key point lay in the formation of one-dimensional filamentous precursors, during which the uniform dispersion of five metal species with disordered configuration would help to crystallize into single-phase HEOs at lower temperatures: inverse spinel (Cr0.2Mn0.2Co0.2Ni0.2Fe0.2)3O4 (400 °C), perovskite La(Mn0.2Cu0.2Co0.2Ni0.2Fe0.2)O3 (500 °C), spinel Ni0.2Mg0.2Cu0.2Mn0.2Co0.2)Al2O4 (550 °C), and cubic Ni0.2Mg0.2Cu0.2Zn0.2Co0.2O (750 °C). As a proof-of-concept, (Ni3MoCoZn)Al12O24 nanofiber exhibited good activity (CH4 Conv. > 96%, CO2 Conv. > 99%, H2/CO ≈ 0.98), long-time stability (>100 h) for the dry reforming of methane (DRM) at 700 °C without coke deposition, better than control samples (Ni3MoCoZn)Al12O24-Coprecipitation-700 (CH4 Conv. < 3%, CO2 Conv. < 7%). The reaction mechanism of DRM was studied by in situ infrared spectroscopy, CO2-TPD, and CO2/CH4-TPSR. This electrospinning method provides a synthetic route for HEO nanofibers for target applications.

17.
Adv Healthc Mater ; 13(8): e2302566, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37931140

RESUMO

Effectively controlling bacterial infection, reducing the inflammation and promoting vascular regeneration are all essential strategies for wound repair. Nanozyme technology has potential applications in the treatment of infections because its non-antibiotic dependent, topical and noninvasive nature. In wound management, copper-based nanozymes have emerged as viable alternatives to antibiotics. In this study, an ultrasmall cupric enzyme with high enzymatic activity is synthesized and added to a nontoxic, self-healing, injectable cationic guar gum (CG) hydrogel network. The nanozyme exhibits remarkable antioxidant properties under neutral conditions, effectively scavenging reactive nitrogen and oxygen species (RNOS). Under acidic conditions, Cu NDs have peroxide (POD) enzyme-like activity, which allows them to eliminate hydrogen peroxides and produce free radicals locally. Antibacterial experiments show that they can kill bacteria and remove biofilms. It reveals that low concentrations of Cu ND/CG decrease the expression of the inflammatory factors in cells and tissues, effectively controlling inflammatory responses. Cu ND/CG hydrogels also inhibit HIF-1α and promote VEGF expression in the wound with the ability to promote vascular regeneration. In vivo safety assessments reveal a favorable biosafety profile. Cu ND/CG hydrogels offer a promising solution for treating acute and infected wounds, highlighting the potential of innovative nanomaterials in wound healing.


Assuntos
Cobre , Infecção dos Ferimentos , Humanos , Oxigênio , Antibacterianos , Hidrogéis
18.
Mol Nutr Food Res ; 68(1): e2300236, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37853937

RESUMO

SCOPE: Orosomucoid 2 (Orm2) is a hepatocyte-secreted protein that plays a crucial role in regulating obesity-type metabolic disease and immunity. The imbalance of gut microbiota is one of the causes of obesity, but the mechanism of the relationship between Orm2 and gut microbiota in obesity remains unclear. METHODS AND RESULTS: Orm2-/- (Orm2 knockout) mice on a normal diet developed spontaneous obesity and metabolic disturbances at the 20th week. Through 16S rRNA gene sequencing, the study finds that the gut microbiota of Orm2-/- mice has a different microbial composition compared to wild type (WT) mice. Furthermore, a high-fat diet (HFD) for 16 weeks exacerbates obesity in Orm2-/- mice. Lack of Orm2 promotes dysregulation of gut microbiota under the HFD, especially a reduction of Clostridium spp. Supplementation with Clostridium butyricum alleviates obesity and alters the gut microbial composition in WT mice, but has minimal effects on Orm2-/- mice. In contrast, co-housing of Orm2-/- mice with WT mice rescues Orm2-/- obesity by reducing pathogenic bacteria and mitigating intestinal inflammation. CONCLUSION: These findings suggest Orm2 deficiency exacerbates HFD-induced gut microbiota disturbance and intestinal inflammation, providing a novel insight into the complex bacterial flora but not a single probiotic administration in the therapeutic strategy of obesity.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Disbiose/microbiologia , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Obesidade/metabolismo , Inflamação , Camundongos Endogâmicos C57BL
19.
J Colloid Interface Sci ; 657: 250-262, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38041970

RESUMO

The abuse of antibiotics accelerates the spread and evolution of drug-resistant bacteria, which seriously threatens human health. Hydroxyl radicals (•OH) are generated by peroxidase in the presence of H2O2, which is strongly oxidizing and can effectively kill bacteria. However, high production costs and poor stability limit the clinical use of natural enzymes. "Nanozyme" is a general term for nanomaterials with catalytic activity similar to that of biological enzymes. Compared to biological enzymes, nanozymes have the advantages of low cost, facile preparation, and easy storage, making them a good choice for the development of antibacterial agents. Here, a nickel-based metal-organic framework (Ni-MOF) with dual enzymatic activity that switches depending on the pH environment was studied. In a slightly acidic environment, Ni-MOF can react with hydrogen peroxide to produce hydroxyl radicals that kill bacteria; in a neutral environment, Ni-MOF instead removes excessive reactive oxygen species (ROS) and promotes the transformation of macrophages into M2 macrophages. Compared to most nanozymes, Ni-MOF has unique electrical conductivity and better biosafety. The results of animal experiments show that Ni-MOF can not only treat infected wounds but also promote the healing of acute wounds and exhibits great clinical application potential.


Assuntos
Estruturas Metalorgânicas , Animais , Humanos , Estruturas Metalorgânicas/farmacologia , Peróxido de Hidrogênio , Peroxidase , Peroxidases , Bactérias , Radical Hidroxila , Antibacterianos/farmacologia , Níquel , Concentração de Íons de Hidrogênio
20.
J Adv Res ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38036217

RESUMO

INTRODUCTION: Neurological dysfunction induced by fluoride contamination is still one of major concern worldwide. Recently, neuroprotective roles of silent information regulator 1 (SIRT1) focusing on mitochondrial function have been highlighted. However, what roles SIRT1 exerts and the underlying regulative mechanisms, remain largely uncharacterized in such neurotoxic process of fluoride. OBJECTIVES: We aimed at evaluating the regulatory roles of SIRT1 in human neuroblastoma SH-SY5Y cells and Sprague-Dawley rats with fluoride treatment, and to further identify potential miRNA directly targeting SIRT1. METHODS: Pharmacological suppression of SIRT1 by nicotinamide (NIC) and promotion of SIRT1 by adenovirus (Ad-SIRT1) or resveratrol (RSV) were employed to assess the effects of SIRT1 in mitochondrial dysfunction induced by fluoride. Also, miRNAs profiling and bioinformatic prediction were used to screen the miRNAs which can regulate SIRT1 directly. Further, chemical mimic or inhibitor of chosen miRNA was applied to validate the modulation of chosen miRNA. RESULTS: NIC exacerbated defects in mitochondrial network dynamics and cytochrome c (Cyto C) release-driven apoptosis, contributing to fluoride-induced neuronal death. In contrast, the ameliorative effects were observed when overexpressing SIRT1 by Ad-SIRT1 in vitro or RSV in vivo. More importantly, miR-708-3p targeting SIRT1 directly was identified. And interestingly, moreover, treatment with chemically modified miR-708-3p mimic aggravated, while miR-708-3p inhibitor suppressed fluoride-caused neuronal death. Further confirmedly, overexpressing SIRT1 effectively neutralized miR-708-3p mimic-worsened fluoride neuronal death via correcting mitochondrial network dynamics. On contrary, inhibiting SIRT1 counteracted the promotive effects of miR-708-3p inhibitor against neurotoxic response by fluoride through aggravating abnormal mitochondrial network dynamics. CONCLUSION: These data underscore the functional importance of SIRT1 to mitochondrial network dynamics in neurotoxic process of fluoride and further screen a novel unreported neuronal function of miR-708-3p as an upstream regulator of targeting SIRT1, which has important theoretical implications for a potential therapeutic and preventative target for treatment of neurotoxic progression by fluoride.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA