Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 12(10)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36295077

RESUMO

The technology of long reads substantially improved the contingency of the genome assembly, particularly resolving contiguity of the repetitive regions. By integrating the interactive fragment using Hi-C, and the HiFi technique, a solid genome of the honeybee Apis mellifera carnica was assembled at the chromosomal level. A distinctive pattern of genes involved in social evolution was found by comparing it with social and solitary bees. A positive selection was identified in genes involved with cold tolerance, which likely underlies the adaptation of this European honeybee subspecies in the north hemisphere. The availability of this new high-quality genome will foster further studies and advances on genome variation during subspeciation, honeybee breeding and comparative genomics.

2.
Ecotoxicol Environ Saf ; 239: 113648, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35605324

RESUMO

Gut microbiota and nutrition play major roles in honey bee health. Recent reports have shown that pesticides can disrupt the gut microbiota and cause malnutrition in honey bees. Carbendazim is the most commonly used fungicide in China, but it is not clear whether carbendazim negatively affects the gut microbes and nutrient intake levels in honey bees. To address this research gap, we assessed the effects of carbendazim on the survival, pollen consumption, and sequenced 16 S rRNA gene to determine the bacterial composition in the midgut and hindgut. Our results suggest that carbendazim exposure does not cause acute death in honey bees even at high concentrations (5000 mg/L), which are extremely unlikely to exist under field conditions. Carbendazim does not disturb the microbiome composition in the gut of young worker bees during gut microbial colonization and adult worker bees with established gut communities in the mid and hindgut. However, carbendazim exposure significantly decreases pollen consumption in honey bees. Thus, exposure of bees to carbendazim can perturb their beneficial nutrition homeostasis, potentially reducing honey bee immunity and increasing their susceptibility to infection by pathogens, which influence effectiveness as pollinators, even colony health.


Assuntos
Microbioma Gastrointestinal , Animais , Abelhas , Benzimidazóis/toxicidade , Carbamatos/toxicidade , Pólen
3.
Gene ; 830: 146503, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35487395

RESUMO

Apis cerana in Changbai Mountain is an ecological type of Apis cerana, which is an excellent breeding material with cold-resistant developed by long-term natural selection under the ecological conditions. However, the physiological and molecular mechanisms of Changbai Mountain population under cold stress are still unclear. In this study, the Nanopore sequencing was carried out for the transcriptome of Apis cerana in Changbai Mountain in the coldest period of overwintering, which will provide a reference to the cold-resistant mechanism. We determined 5,941 complete ORF sequences, 1,193 lncRNAs, 619 TFs, 10,866 SSRs and functional annotations of 11,599 new transcripts. Our results showed that the myosin family and the C2H2 zinc finger protein transcription factor family possibly have significant impacts on the response mechanism of cold stress during overwintering. In addition, the cold environment alters genes expression profiles in honeybees via different AS and APA mechanisms. These altered genes in Hippo, Foxo, and MARK pathways help them counter the stress of cold in overwinter period. Our results might provide clues about the response of eastern honeybees to extreme cold, and reflect the possible genetic basis of physiological changes.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Animais , Abelhas/genética , Regulação da Expressão Gênica , Seleção Genética
4.
Insects ; 14(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36661944

RESUMO

Piwi-interacting RNAs (piRNAs), a class of small non-coding RNAs (ncRNAs), play pivotal roles in maintaining the genomic stability and modulating biological processes such as growth and development via the regulation of gene expression. However, the piRNAs in the Asian honeybee (Apis cerana) are still largely unknown at present. In this current work, on the basis of previously gained high-quality small RNA-seq datasets, piRNAs in the larval gut of Apis cerana cerana, the nominated species of A. cerana, were identified for the first time, followed by an in-depth investigation of the regulatory roles of differentially expressed piRNAs (DEpiRNAs) in the developmental process of the A. c. cerana. Here, a total of 621 piRNAs were identified in A. c. cerana larval guts, among which 499 piRNAs were shared by 4-(Ac4 group), 5-(Ac5 group), and 6-day-old (Ac6 group) larval guts, while the numbers of unique ones equaled 79, 37, and 11, respectively. The piRNAs in each group ranged from 24 nucleotides (nt) to 33 nt in length, and the first base of the piRNAs had a cytosine (C) bias. Additionally, five up-regulated and five down-regulated piRNAs were identified in the Ac4 vs. Ac5 comparison group, nine of which could target 9011 mRNAs; these targets were involved in 41 GO terms and 137 pathways. Comparatively, 22 up-regulated piRNAs were detected in the Ac5 vs. Ac6 comparison group, 21 of which could target 28,969 mRNAs; these targets were engaged in 46 functional terms and 164 pathways. The results suggested an overall alteration of the expression pattern of piRNAs during the developmental process of A. c. cerana larvae. The regulatory network analysis showed that piR-ace-748815 and piR-ace-512574 in the Ac4 vs. Ac5 comparison group as well as piR-ace-716466 and piR-ace-828146 in the Ac5 vs. Ac6 comparison group were linked to the highest number of targets. Further investigation indicated that targets of DEpiRNAs in the abovementioned two comparison groups could be annotated to several growth and development-associated pathways, such as the Jak/STAT, TGF-ß, and Wnt signaling pathways, indicating the involvement of DEpiRNAs in modulating larval gut development via these crucial pathways. Moreover, the expression trends of six randomly selected DEpiRNAs were verified using a combination of stem-loop RT-PCR and RT-qPCR. These results not only provide a novel insight into the development of the A. c. cerana larval gut, but also lay a foundation for uncovering the epigenetic mechanism underlying larval gut development.

5.
Chemosphere ; 266: 129011, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33246707

RESUMO

Studying the sublethal effects of agrochemical pesticides on nontarget honeybees (Apis mellifera) is important for agricultural development. Carbendazim is a widely used broad-spectrum fungicide that inhibits mitotic microtubule formation and cell division. However, the impact of carbendazim on bee health and development has not been fully elucidated. Here, using proteomics approaches, we assessed in vitro the changes in the expression of functional proteins in the head of newly emerged adults following treatment with field concentration of carbendazim during the larval stage. Treatment with carbendazim severely altered 266 protein expression patterns in the heads of adults and 218 of them showed downregulation after carbendazim exposure. Notably, major royal jelly proteins, a crucial multifunctional protein family with irreplaceable function in sustaining the development of colonies, were significantly suppressed in carbendazim-treated bees. This result was verified in both head and hypopharyngeal gland of nurse bees. Moreover, visual and olfactory loss, immune functions, muscular activity, social behavior, neural and brain development, protein synthesis and modification, and metabolism-related proteins were likely inhibited by carbendazim treatment. Together, these results suggest that carbendazim is an environmental risk factor that likely weakens bee colonies, partially due to reduced expression of major royal jelly proteins, which may be potential causes of colony collapse disorder.


Assuntos
Proteínas de Insetos , Proteômica , Animais , Abelhas , Benzimidazóis , Carbamatos , Ácidos Graxos , Proteínas de Insetos/genética , Larva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...