Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 167: 22-30, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37236002

RESUMO

Food waste (FW) has been widely considered as an essential resource for the production of short-chain fatty acids (SCFAs), an important class of chemicals with wide applications and over 20 million tons of annual market demand, by anaerobic fermentation. Although enzymatic pre-treatment could improve the FW biodegradation efficiency, resulting in enhanced efficiency of solubilization and hydrolysis, the influence of fermentation-pH on the SCFAs production and the metabolic functions, have rarely been reported. This study demonstrated that the uncontrolled pH could efficiently lead to an increase in the SCFAs production (33011 mgCOD/L) during long-term fermentation of FW (mainly consisting of 48.8% carbohydrates, 20.6% proteins, and 17.4% lipids) after enzymatic pre-treatment compared to the control (16413 mgCOD/L). Meanwhile, the acid-producing processes (i.e., solubilization, hydrolysis, and acidification) were synchronously enhanced by the enzymatic pre-treatment and no control over fermentation-pH. Metagenomic analysis revealed that the acid-forming microorganisms (i.e., Olsenella sp. and Sporanaerobacter) were significantly accumulated, and the corresponding genetic expressions related to extracellular hydrolysis (i.e., aspB and gltB), membrane transport (i.e., metL and glnH), and intracellular material metabolism (i.e., pfkA and ackA) were evidently stimulated, thereby promoting ultimate SCFAs generation. Although the alkaline conditions could further slightly increase the SCFAs yield slightly (37100 mgCOD/L) and also stimulate the metabolic activities, it might not be suitable for large-scale practical applications due to additional costs associated with alkaline chemical additives.


Assuntos
Alimentos , Eliminação de Resíduos , Fermentação , Esgotos/química , Ácidos Graxos Voláteis/metabolismo , Anaerobiose , Concentração de Íons de Hidrogênio
2.
Environ Pollut ; 317: 120795, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36462475

RESUMO

In this study, the amendment of red mud (RM) in dairy manure composting on the fate of antibiotic resistance genes (ARGs) by both direct (bacteria community, mobile genetic elements and quorum sensing) and indirect ways (environmental factors and antibiotics) was analyzed. The results showed that RM reduced the total relative abundances of 10 ARGs and 4 mobile genetic elements (MGEs). And the relative abundances of total ARGs and MGEs decreased by 53.48% and 22.30% in T (with RM added) on day 47 compared with day 0. Meanwhile, the modification of RM significantly increased the abundance of lsrK, pvdQ and ahlD in quorum quenching (QQ) and decreased the abundance of luxS in quorum sensing (QS) (P < 0.05), thereby attenuating the intercellular genes frequency of communication. The microbial community and network analysis showed that 25 potential hosts of ARGs were mainly related to Firmicutes, Proteobacteria and Actinobacteria. Redundancy analysis (RDA) and structural equation model (SEM) further indicated that RM altered microbial community structure by regulating antibiotic content and environmental factors (temperature, pH, moisture content and organic matter content), which then affected horizontal gene transfer (HGT) in ARGs mediated by QS and MGEs. These results provide new insights into the dissemination mechanism and removal of ARGs in composting process.


Assuntos
Compostagem , Genes Bacterianos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Esterco/microbiologia
3.
J Environ Manage ; 317: 115436, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35653842

RESUMO

The mechanism of nitrogen transformation of sulfate radical (SO- 4⋅) in the process of composting is unclear. The objectives of this study were to investigate the influence of SO- 4⋅ on nitrogen biotransformation during composting and to compare the differences in physicochemical parameters and metagenomics analysis between CK (fresh dairy manure and bagasse pith) and PS (the composting raw materials added with potassium persulfate). The results indicated that SO-4⋅ guides electron transfer in the conversion of NH+4-N to NO- 3-N and breaches the extracellular polysaccharide (EPS) structure to promote nitrogen removal. Aminomonooxygenase (AMO) and nitrate reductase (NR) levels displayed an interactive relationship between microorganisms and substrates. Metagenomics analysis revealed distinct microbial community compositions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways between nitrification and denitrification. Correlation analysis indicated that Methanobrevibacter, Bacillus and Pseudomonas were closely related to these processes. This work demonstrates the effect of SO- 4⋅ on nitrogen cycling and retention, and possible mechanisms of nitrification and denitrification during composting.


Assuntos
Compostagem , Esterco , Metagenômica , Nitrificação , Nitrogênio/metabolismo , Solo , Sulfatos
4.
Bioresour Technol ; 359: 127476, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35714777

RESUMO

This study aims to explore the succession of microbes carrying antibiotic resistance genes (ARGs), the relationship between heavy metal speciation and ARGs via Fenton-like reaction during composting. The results indicated that the passivation of Cu and Ni was more prominent, and the Fenton-like reaction promoted exceptionally the passivation of Zn, Ni and Mn. The removals of macrolides-lincosamids-streptogramins (MLS), aminoglycoside and tetracycline resistance genes were induced with the composting process, but the relative abundance of bacitracin resistance genes increased. Additionally, Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes were main carriers and disseminators of ARGs, and the Fenton-like reaction improved the contribution degree of Proteobacteria to bacitracin, tetracycline and aminoglycoside resistance genes. Redundancy analysis revealed the passivation of heavy metal contributed to the removal of tetracycline, MLS and aminoglycoside resistance genes. Conclusively, the Fenton-like reaction promoted the passivation of Zn, Ni and Mn, and controlled the abundance of bacitracin resistance genes in composting.


Assuntos
Compostagem , Metais Pesados , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Bacitracina/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos/genética , Esterco , Metais Pesados/farmacologia , Tetraciclinas/farmacologia
5.
Environ Sci Pollut Res Int ; 29(50): 76298-76309, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35668255

RESUMO

The application of ionic liquids with sawdust and fresh dairy manure was studied in composting. The degradation of organic matter (OM), dissolved organic matter (DOM), and lignocellulose was analyzed. The DOM decreased by 14.25 mg/g and 11.11 mg/g in experimental group (ILs) and control group (CK), respectively. OM decreased by 7.32% (CK) and 8.91% (ILs), respectively. The degradation rates of hemicellulose, lignin, and cellulose in ILs (56.62%, 42.01%, and 23.97%) were higher than in CK (38.39%, 39.82%, and 16.04%). Microbial community and carbohydrate-active enzymes (CAZymes) were analyzed based on metagenomics. Metagenomic analysis results showed that ionic liquids enriched Actinobacteria and Proteobacteria in composting. Compared with CK, the total abundance values of GH11, GH6, AA6, and AA3_2 in ILs increased by 13.98%, 10.12%, 11.21%, and 13.68%, respectively. Ionic liquids can improve the lignocellulosic degradation by regulating the environmental physicochemical parameters (temperature, pH, C/N) to promote the growth of Actinobacteria and Proteobacteria and carbohydrate-active enzymes (CAZymes) abundance. Therefore, ionic liquids are a promising additive in lignocellulosic waste composting.


Assuntos
Actinobacteria , Compostagem , Líquidos Iônicos , Microbiota , Actinobacteria/genética , Actinobacteria/metabolismo , Bactérias/genética , Bactérias/metabolismo , Celulose , Lignina/metabolismo , Esterco/microbiologia , Metagenômica , Solo
6.
Chemosphere ; 302: 134908, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35551932

RESUMO

Lignocellulosic degradation is a bottleneck of bioconversion during the composting process. In-situ generation of H2O2 in the composting system was an ideal method for efficiently promoting lignocellulase degradation, and zero valent iron (ZVI) was concerned because it can generate H2O2 by reducing dissolved oxygen. This study focused on the effects of ZVI treatment on lignocellulose degradation, microbial communities, and carbohydrate-active enzymes (CAZymes) genes during composting. Its results indicated that ZVI increased H2O2 content during composting, accompanied by the formation of •OH. The degradation rates of lignin, cellulose and hemicellulose in ZVI group (20.77%, 30.35% and 44.7%) were significantly higher than in CK group (17.01%, 26.12% and 38.5%). Metagenomic analysis showed that ZVI induced microbial growth that favored lignocellulose degradation, which increased the abundance of Actinobacteria and Firmicutes but reduced Proteobacteria. At the genus level, the abundance of Thermomonospora, Streptomyces, and Bacillus significantly increased. In addition, glycoside hydrolases and auxiliary activities were important CAZymes families of lignocellulose degradation, and their abundance was higher in the ZVI group. Redundancy analysis showed that the increased H2O2 and •OH content was a critical factor in improving lignocellulose degradation. Overall, H2O2 as a co-substrate enhanced the enzymatic efficiency, •OH unspecifically attacked lignocellulose, and the increase in functional microbial abundance was the main reason for promoting lignocellulose degradation in composting.


Assuntos
Compostagem , Peróxido de Hidrogênio , Ferro/química , Lignina/metabolismo
7.
J Environ Manage ; 308: 114682, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35144065

RESUMO

This study investigated the effects of biochar-based solid acids (SAs) on carbon conversion, alpha diversity and bacterial community succession during cow manure composting with the goal of providing a new strategy for rapid carbon conversion during composting. The addition of SA prolonged the thermophilic phase and accelerated the degradation of lignocellulose; in particular, the degradation time of cellulose was shortened by 50% and the humus content was increased by 22.56% compared with the control group (CK). In addition, high-throughput sequencing results showed that SA improved the alpha diversity and the relative abundance of thermophilic bacteria, mainly Actinobacteria, increased by 12.955% compared with CK. A redundancy analysis (RDA) showed that Actinobacteria was positively correlated with the transformation of carbon.


Assuntos
Compostagem , Animais , Bactérias/genética , Carbono , Bovinos , Carvão Vegetal , Feminino , Esterco/microbiologia , Solo
8.
Bioresour Technol ; 346: 126654, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34979278

RESUMO

The objective of this study was to investigate the effects of adding red mud (RM) on denitrification and nitrogen fixation in composting. The results revealed that the retentions of NH4+-N and NO3--N in experimental group (T) with RM were 16.20% and 7.27% higher than that in control group (CK) at the mature stage, respectively. The composition and structure of RM can effectively inhibit denitrification and enhance nitrogen fixation. Moreover, metagenomic analysis revealed that Actinobacteria and Proteobacteria were the main microorganisms in denitrification process, while Firmicutes were the main microorganisms in nitrogen fixation process. In T, denitrifying genes nirK and nosZ were 11% and 18% lower than those in CK, respectively, while nitrogen-fixing genes nifK and nifD were 18% and 34% higher than those in control group, respectively. Therefore, adding RM could reduce nitrogen loss and improve the quality of compost via enhancing nitrogen fixation and inhibiting denitrification process.


Assuntos
Compostagem , Desnitrificação , Nitrogênio , Fixação de Nitrogênio , Solo
9.
Bioresour Technol ; 341: 125906, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34523564

RESUMO

This study aims to explore the impacts of the Fenton-like reaction on hydrogen peroxide, hydroxyl radicals, humic substance (HS) formation, laccase activity and microbial communities during composting to optimize composting performances. The results indicated that the activity of laccase in the presence of the Fenton-like reaction (HC) (35.92 U/g) was significantly higher than that in the control (CP) (29.56 U/g). The content of HS in HC (151.91 g/kg) was higher than that in CP (131.73 g/kg), and amides, quinones, aliphatic compounds and aromatic compounds were promoted to form HS in HC by 2D-FTIR-COS analysis. Proteobacteria contributed most greatly to AA1 at phylum level, Pseudomonas and Sphingomonas abundances increased in HC. Redundancy analysis indicated that there was a strong positive correlation among the Fenton-like reaction, laccase and HS. Conclusively, the Fenton-like reaction improved the activity of laccase, promoted the formation of HS and enhanced the quality of compost.


Assuntos
Compostagem , Substâncias Húmicas/análise , Lacase , Esterco , Solo
10.
Bioresour Technol ; 338: 125546, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34274584

RESUMO

The aim of this study was to use metagenomics to investigate how Illite/smectite clay (I/S) affected Auxiliary Activities (AA1, AA2, AA3) thereby enhancing lignin decomposition and humification. Metagenomics analysis illustrated that the abundances of AA1, AA2, AA3 in test group (TG) with 10% I/S were 28.98%, 15.18%, 14.36% higher than that in reference group (RG), respectively. Meanwhile, I/S greatly boosted the efficiency of lignin degradation (17.96%) and humus formation (7.16%) compared with RG (13.10%, 3.49%). Furthermore, Actinobacteria was the microorganism with the greatest contribution in RG and TG to secreting AA1 (41.12%, 57.37%), AA2 (62.42%, 65.28%), AA3 (47.04%, 55.47%). Redundancy analysis (RDA) demonstrated that I/S could make the laccase encoding gene-AA1 contribute more to HS formation relative to AA2 and AA3. In conclusion, applying I/S in cattle manure composting effectively improved the abundance, bioavailability of lignin degradation functional gene enzymes and the composting efficiency.


Assuntos
Compostagem , Animais , Bovinos , Argila , Ecossistema , Lacase/genética , Lignina , Esterco , Metagenômica , Minerais , Silicatos , Solo
11.
Sci Total Environ ; 794: 148530, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34217085

RESUMO

In this study, fresh dairy manure and bagasse pith were used as raw materials to study the effect of potassium persulfate in the aerobic composting process. The influence of sulfate radical anion (SO4-·) generated by thermally activated persulfate on physicochemical parameters, lignocellulose degradation, humic substance (HS) formation, microbial community succession, and carbohydrate-active enzymes (CAZymes) composition were assessed during composting. Experimental results showed that the degradation rates of cellulose, hemicellulose and lignin in the treatment group with potassium persulfate (PS) (61.47%, 74.63%, 73.1%) were higher than that in blank control group (CK) (59.98%, 71.47%, 70.89%), respectively. Additionally, persulfate additive promoted dynamic variation of dissolved organic matter (DOM) and accelerated the formation of HS. Furthermore, metagenomics analysis revealed that persulfate changed the structure of the microbial community, and the relative abundances of Actinobacteria and Proteobacteria increased by 17.64% and 34.09% in PS, whereas 12.09% and 29.96% in CK. Glycoside hydrolases (GHs) and auxiliary activities (AAs) families were crucial to degrade lignocellulose, and their abundances were more in PS. Redundancy analysis (RDA) manifested that Actinobacteria and Proteobacteria were closely associated with lignocellulosic degradation. In brief, persulfate could accelerate the degradation of organic components, promote the formation of HS, optimize the structure of microbial community, and improve the compost quality.


Assuntos
Compostagem , Lignina , Humanos , Esterco , Metagenômica , Solo
12.
J Environ Manage ; 295: 113126, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34174682

RESUMO

This work aims to investigate the influence of hydrogen peroxide (H2O2) and ascorbic acid (ASCA) on the physicochemical characteristics, organic matter (OM) deconstructions, humification degree and succession of bacterial communities for co-composting of bagasse pith and dairy manure. The results indicated that H2O2 and ASCA accelerated the degradation of lignocellulose, improved the transformation of dissolved organic matter (DOM), and enhanced the content of humic substance (HS) and the degree of its aromatization. The bacterial communities were significantly changed in the presence of additives, in which the relative abundances of Firmicutes and Actinobacteria significantly increased. Redundancy analysis (RDA) indicated that the degradation of OM and lignocellulose more influenced the bacterial community compositions. Conclusively, adding H2O2 and ASCA accelerated lignocellulose degradation efficiency, and improved the composting process, which provided an optimized method to dispose of lignocellulose wastes and livestock manure.


Assuntos
Compostagem , Microbiota , Ácido Ascórbico , Peróxido de Hidrogênio , Esterco , Solo
13.
J Biotechnol ; 333: 39-48, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33945823

RESUMO

The quality of compost is drastically reduced due to the loss of carbon, which negatively impacts the environment. Carbon emission reduction and carbon dioxide (CO2) fixation have attracted much attention in composting research. In this study, the relationship between CO2 emission, humic substances (HS) formation and cbbL-containing autotrophic microbes (CCAM) was analyzed by adding biochar during cow manure composting. The results showed that biochar can facilitate the degradation of organic matter (OM) and formation of HS, as well as reinforce the diversity and abundance of CCAM community, thereby promoting CO2 fixation and reducing carbon loss during composting. High-throughput sequencing analysis revealed significant increase in Actinobacteriota and Proteobacteria abundance by 30.97 % and 10.48 %, respectively, thus increasing carbon fixation by 32.07 %. Additionally, Alpha diversity index increased significantly during thermophilic phase, while Shannon index increased by 143.12 % and Sobs index increased by 51.62 %. Redundancy analysis (RDA) indicated that CO2 was positively correlated with C/N, temperature, HS and dissolved organic matter (DOM), while the abundance of Paeniclostridium, Corynebacterium, Bifidobacterium, Clostridium, Turicibacter and Romboutsia were positively correlated with temperature, CO2, C/N and E2/E4 (p <  0.01).


Assuntos
Compostagem , Animais , Ciclo do Carbono , Dióxido de Carbono , Bovinos , Carvão Vegetal , Feminino , Substâncias Húmicas , Solo
14.
Waste Manag ; 127: 1-9, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33910097

RESUMO

The purpose of this study was to analyze the effects of illite/smectite clay (I/S) on lignocellulosic degradation and humification process via metagenomics analysis during cattle manure composting. The test group (TG) with 10% I/S and the reference group (RG) were established. The results indicated that the addition of I/S made the degradation rate of cellulose, hemicellulose and lignin in TG (1.56%, 29.01%, 19.95%) was higher than that in RG (1.16%, 17.24%, 13.14%). Compared with RG, the abundance values of AA2, AA10, GH1 and GH10 in TG increased by 15.18%, 29.28%, 31.08%, 21.65%, respectively. Meanwhile, humic substance (HS) content was increased by 3.49% and 7.16% during RG and TG composting. Furthermore, the microbial community in TG changed, in which the relative abundance of Actinobacteria increased and Proteobacteria decreased. Redundancy analysis (RDA) showed that the temperature was positively correlated with the abundance of AA2, AA10, GH1 and GH10, whereas the organic matter content was negatively correlated. Overall, adding I/S to the composting could stimulate microbial activity, promote the degradation of lignocellulose and humification process.


Assuntos
Compostagem , Animais , Bovinos , Argila , Lignina , Esterco , Metagenômica , Minerais , Silicatos , Solo
15.
Bioresour Technol ; 321: 124446, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33264744

RESUMO

The purpose of this study was to investigate the effects of anionic and cationic surfactants on the physico-chemical properties, organic matter (OM) degradation, bacterial community structure and metabolic function during composting of dairy manure and sugarcane bagasse. The results showed that the surfactant could optimize the composting conditions to promote the degradation of OM. The most OM degradation and humic substances (HS) synthesis were observed in SAS. Firmicutes and Proteobacteria were more abundant in SAS and CTAC, and Actinobacteria in CK. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) showed that SAS and CTAC are more abundant than CK in genes related to metabolism, environmental and genetic information processing. The correlation analysis showed that the dominant bacteria had more significant correlation with environmental factors. In general, the anionic surfactant could better promote the degradation of OM, change the structure of microbial community, and improve the quality of compost.


Assuntos
Compostagem , Microbiota , Esterco , Filogenia , Solo , Tensoativos
16.
Bioresour Technol ; 318: 124265, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33099095

RESUMO

The purpose of this research was to explore the effects of red mud on cellulose degradation and the succession of ß-glucosidase microbial community in composting to better enhance the quality of compost. The activity of ß-glucosidase in the treatment group with red mud (T) was 0.42-1.07 times higher than that in the control group without red mud (CK) from day 7 to 21 of composting. The final cellulose degradation ratios of the T (84.73%) were 10.02% higher than that of the CK (74.71%). In addition, Proteobacteria, Actinobacteria, Firmicutes, and Ascomycota were the most dominant ß-glucosidase-producing microbes, and these microbes were also the phyla causing composting performances differences in the high temperature, cooling, and maturity periods of CK and T. These results indicated that adding red mud can improve ß-glucosidase activity and boost the breakdown of cellulose in composting process.


Assuntos
Compostagem , Microbiota , Celulose , Esterco , Solo , beta-Glucosidase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...