Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Colloid Interface Sci ; 674: 852-861, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38955016

RESUMO

Lithium-selenium (Li-Se) batteries are considered promising alternatives to lithium-ion batteries due to their higher volumetric capacity and energy density. However, they still face limitations in efficiently utilizing the active selenium. Here, we develop surface-functionalized mesoporous hollow carbon nanospheres as the selenium host. By using KOH activation, the surface of the carbon nanospheres is functionalized with hydroxyl groups, which greatly improve the utilization of selenium and facilitate the conversion of lithium selenides, leading to much higher capacities compared to ZnCl2 activation and untreated carbon nanospheres. Theory and experimental evidence suggest that surface hydroxyl groups can enhance the reduction conversion of polyselenides to selenides and facilitate the oxidation reaction of selenides to elemental selenium. In-situ and ex-situ characterization techniques provided additional confirmation of the hydroxyl groups electrochemical durability in catalyzing selenium conversion. The meticulously engineered Se cathode demonstrates a high specific capacity of 594 mA h g-1 at 0.5C, excellent rate capability of 464 mA h g-1 at 2C, and a stable cycling performance of 500 cycles at 2C with a capacity retention of 84.8 %, corresponding to an ultra-low-capacity decay rate of 0.0144 % per cycle, surpassing many reported lithium-selenium battery technologies.

2.
Phys Chem Chem Phys ; 26(20): 14847-14856, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38727050

RESUMO

MXenes have attracted substantial attention for their various applications in energy storage, sensors, and catalysts. Experimental exploration of MXenes with hybrid terminal surfaces offers a unique means of property tailoring that is crucial for expanding the performance space of MXenes, wherein the formation energy of an MXene with mixed surface terminals plays a key role in determining its relative stability and practical applications. However, the challenge of identifying energetically stable MXenes with multifunctional surfaces persists, primarily due to the absence of precise surface modification during experiments and the vast structural space for DFT calculations. Herein, we use an all-fixed transfer (AFT) framework combined with first-principles calculations to predict the formation energies of MXenes terminated by binary elements from groups VIA and VIIA. The trained model exhibits a high average R2 of 0.99, maintaining transferability and accuracy in predicting larger supercells from smaller-sized MXenes and datasets despite the structural imbalance between the training and prediction sets. The underlying interpretation of the high accuracy is revealed through the capture of main attributes and comparison of node features. Additionally, it is important to mention that the factors influencing the average formation energy include the types of element pairs, the ratio of terminal groups, and the distribution of terminations on two surfaces, with the first one being dominant. Finally, we successfully streamline the diverse structural cardinality of a large hybrid terminated MXene space of over 700 million, thereby facilitating the rapid screening of the top 5 stable MXene classes with binary terminal elements (FO, FCl, FBr, FS, and FSe). Besides, in the scenarios of lithium storage, the TL-predicted MXene can enhance its relative stability by increasing the fluorine ratio where the capacity can be optimized by different surface group combinations. All results indicate that the AFT framework has the advantages of screening functional MXenes with a huge structure space from smaller and imbalanced data sets.

3.
ACS Appl Mater Interfaces ; 16(13): 16474-16481, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38502742

RESUMO

The development of lead halide perovskite X-ray detectors has promising applications in medical imaging and security inspection but is hindered by poor long-term stability and drift of the dark current and photocurrent. Herein, we design a (Cs0.05MA0.65FA0.3)PbI3-(Cs0.1MA1.3FA0.6)AgBiI6 double-layer perovskite film to assemble a self-powered flat-panel X-ray detector. The demonstrated X-ray detector achieves an outstanding self-powered sensitivity of 80 µC Gyair-1 cm-2 under a 0 V bias. More importantly, owing to the inhibition of the phase transition process and ion migration of (Cs0.05MA0.65FA0.3)PbI3 by the (Cs0.1MA1.3FA0.6)AgBiI6 layer, the device exhibits excellent continuous operating stability with a retention rate of 99% dark current and photocurrent over X-ray pulses of up to 4000 s and excellent long-term stability without a loss of the original response current after 150 days in an air environment. The strategy of double-layer perovskites improves the stability and sensitivity of devices, which paves a path for the industrial application of lead halide perovskite X-ray detectors.

4.
Nano Lett ; 24(13): 3961-3970, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526195

RESUMO

Developing a high-performance membrane electrode assembly (MEA) poses a formidable challenge for fuel cells, which lies in achieving both high metal loading and efficient catalytic activity concurrently for MEA catalysts. Here, we introduce a porous Co@NC carrier to synthesize sub-4 nm PtCo intermetallic nanocrystals, achieving an impressive Pt loading of 27 wt %. The PtCo-CoNC catalyst demonstrates exceptional catalytic activity and remarkable stability for the oxygen reduction reaction. Advanced characterization techniques and theoretical calculations emphasize the synergistic effect between PtCo alloys and single Co atoms, which enhances the desorption of the OH* intermediate. Furthermore, the PtCo-CoNC-based cathode delivers a high power density of 1.22 W cm-2 in the MEA test owing to the enhanced mass transport, which is verified by the simulation results of the O2 distributions and current density inside the catalyst layer. This study lays the groundwork for the design of efficient catalysts with practical applications in fuel cells.

5.
J Colloid Interface Sci ; 663: 203-211, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38401441

RESUMO

Pyrite FeS2, as a promising conversion-type cathode material, faces rapid capacity degradation due to challenges such as polysulfide shuttle and massive volume changes. Herein, a localized high-concentration electrolyte (LHCE) based on dual-salt lithium bis(fluorosulfonyl)imide (LiFSI) and lithium bis(trifluoromethanesulphonyl)imide (LiTFSI) is designed to address the challenges. By the dual-salt strategy, we tailor a more desirable solvation structure than that in the single-salt system. Specifically, the solvation structure involving FSI- and TFSI- enables milder electrolyte decomposition, which reduces initial capacity loss. Meanwhile, it facilitates the formation of a stable and flexible cathode/electrolyte interphase (CEI), effectively mitigating side effects and accommodating volume changes. Consequently, the micro-sized FeS2 realizes a capacity of 641 mAh g-1 after 600 cycles with a retention rate of 90%, significantly improving the cycling stability of the FeS2 cathode. This work underscores the pivotal role of solvation structure in modulating electrochemical performances and provides a simple and effective electrolyte design concept for conversion-type cathodes.

6.
Phys Chem Chem Phys ; 26(4): 3400-3407, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38204431

RESUMO

The combination of borophene with a supporting metallic layer is beneficial in stabilizing its structure and promoting its application in energy storage. Here, through first-principles calculations, we screen a ß12-borophene/graphene (ß12-B/G) heterostructure with superior structural integrity, strong interlayer binding, and high thermodynamic stability among different B/G heterostructures. Besides, it is noteworthy that ß12-B/G has been recently synthesized, further opening the possibility of expanding its use in energy storage. Then the selected target is systematically investigated as an anode material for lithium-ion batteries (LIBs). Compared with each monolayer component, multiple lithium-ion adsorption is achieved in the ß12-B/G heterostructure, resulting in an ultra-high theoretical specific capacity of 2267 mA h g-1. In addition, a lower diffusion energy barrier indicates faster electron transport and lithium-ion diffusion in the ß12-B/G heterostructure. Notably, the multilayer lithium adsorption avoids the formation of dendritic deposits, as evidenced by complete ionization of the cationic layers. Moreover, the disparity in the work functions of the individual layers gives rise to a built-in dipole in ß12-B/G, further enhancing the multilayer lithium storage and ion migration. All these results suggest that the construction of borophene-based heterostructures with built-in dipoles is a feasible way to design high-performance LIB anode materials.

7.
Phys Chem Chem Phys ; 26(4): 3525-3530, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38206617

RESUMO

Understanding the mechanisms of gas adsorption on a solid surface and making this process tunable are of great significance in fundamental science and industrial applications. Bond creation and charge transfer are often used to explain the origin of adsorption energy (Ead). However, in this study, a new mechanism is observed in O2 adsorption on pure silicene (PS) and silicene/graphene heterojunction (SGH) surfaces, in which the charge distribution remains almost unchanged, but Ead still has a significant change in the order of 0.3 eV. The weakened Fermi level pinning effect is found to be responsible for this interesting behavior and the variation of Ead is approximately equal to the change of work function. Furthermore, this effect is independent of the twist angles in the van der Waals SGH. Our results are consistent with experimental observations in overcoming the degradation of silicene in air.

8.
Artigo em Inglês | MEDLINE | ID: mdl-37922330

RESUMO

Photoelectrochemical (PEC) water splitting is a potential solution for a low-carbon society and clean energy storage due to its ability to produce hydrogen and oxygen. However, the slow oxidation half-reaction of the process has limited its overall efficacy, necessitating the development of an efficient photoanode. Colloidal CsPbBr3 nanocrystals (NCs) have been identified as promising candidates due to their high light absorption and valence band position. However, the presence of the electrical insulator, long-chain oleate molecules, on the surface of the CsPbBr3 NCs has hindered efficient charge carrier separation and transport. To solve this problem, short-chain 1,2-ethanedithiol (EDT) ligands were used to replace the oleate ligands on the surface of the CsPbBr3 NCs through a solid-state ligand exchange method. This resulted in a reduction of the nanocrystal spacing and a cross-linking reaction, which improved the photogenerated carrier separation and transport while still passivating the dangling bonds on the CsPbBr3 NC surface. Ultimately, this led to a remarkable photocurrent density of 3.34 mA cm-2 (1.23 VRHE), which was 5.2 times higher than that of the pristine oleate-CsPbBr3 NC (0.64 mA cm-2)-based device. This work presents an efficient way of developing inorganic lead halide perovskite colloidal nanocrystal-based photoanodes through surface ligand engineering.

9.
J Colloid Interface Sci ; 649: 255-263, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37348345

RESUMO

Fluorinated carbon (CFx) cathodes possess the highest theoretical energy density among lithium primary batteries. However, achieving reversibility in CFx remains a significant challenge. This work employs a high-voltage sulfolane electrolyte and achieves a highly reversible CFx cathodes in lithium-ion batteries (LIBs) via fine modification of the C-F bond character. The improved reversibility of CFx originates from the semi-ionic CFx phase, with a superior bond length and weaker bond energy than a covalent bond. This characteristic significantly mitigates the challenges encountered during the charging process. We screen and identify the fluorinated graphene CF1.12 as a suitable cathode, providing an appropriate fluorine content and sufficient semi-ionic C-F bonds for rechargeable LIBs. This fluorinated graphene CF1.12 exhibits an initial discharge specific capacity of 814 mAh g-1 and a reversible discharge specific capacity of 350 mAh g-1. This work provides a new clue for chemical bond regulation studies and provides insights into stimulating reversibility of primary-cell cathodes.

10.
Phys Chem Chem Phys ; 25(27): 18086-18094, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37381783

RESUMO

The important physical quantities of materials, such as band gap, have been predicted efficiently with the help of machine learning (ML), in addition to the widely used experimental or computational methods. Under this scheme, by combining density functional theory (DFT) calculations and ML predictive models, the band gaps of doped semiconductors with normal doping concentrations are predicted successfully. Our present work provides a solution to the problem of how to obtain the band gaps of semiconductors doped with extremely low concentrations, which are important cases for some device designs. The structures were constructed by configuration screening with a symmetric criterion, and three-dimensional spatial structural variation was mapped to one-dimensional features, which are the key steps for the ML predictive model. The biggest error in the predicted band gaps of dilute nitride-doped GaAs by ML models is not more than 10%, compared with values obtained from DFT. Considering the limitation of material data, a few-shot learning method was further adopted to check the performance of the predictive models. The performance of the ML models was validated using data out of training and testing datasets. Our method will efficiently accelerate the prediction of physical properties of semiconductors with extremely low-concentration doping.

11.
Opt Lett ; 48(10): 2571-2574, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37186711

RESUMO

Two-dimensional (2D) antiferromagnetic semiconductor chromium thiophosphate (CrPS4) has gradually become a major candidate material for low-dimensional nanoelectromechanical devices due to its remarkable structural, photoelectric characteristics and potentially magnetic properties. Here, we report the experimental study of a new few-layer CrPS4 nanomechanical resonator demonstrating excellent vibration characteristics through the laser interferometry system, including the uniqueness of resonant mode, the ability to work at the very high frequency, and gate tuning. In addition, we demonstrate that the magnetic phase transition of CrPS4 strips can be effectively detected by temperature-regulated resonant frequencies, which proves the coupling between magnetic phase and mechanical vibration. We believe that our findings will promote the further research and applications of the resonator for 2D magnetic materials in the field of optical/mechanical signal sensing and precision measurement.

12.
J Colloid Interface Sci ; 646: 150-158, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37187048

RESUMO

As a promising cathode material for high-performance lithium-ion batteries, olivine LiFe1-xMnxPO4 (0 < x < 1, LFMP) combines the high safety of LiFePO4 and the high energy density of LiMnPO4. During the charge-discharge process, poor interface stability of active materials leads to capacity decay, which prevents its commercial application. Here, to stabilize the interface, a new electrolyte additive potassium 2-thienyl tri-fluoroborate (2-TFBP) is developed to boost the performance of LiFe0.3Mn0.7PO4 at 4.5 V vs. Li/Li+. Specifically, after 200 cycles, the capacity retention remains at 83.78% in the electrolyte containing 0.2% 2-TFBP while the capacity retention without 2-TFBP addition is only 53.94%. Based on the comprehensive measurements results, the improved cyclic performance is attributed to that 2-TFBP has a higher highest occupied molecular orbit (HOMO) energy and its thiophene group can be electropolymerized above 4.4 V vs. Li/Li+ for generating uniform cathode electrolyte interphase (CEI) with poly-thiophene, which can stable materials structure and suppress the decomposition of electrolytes. Meanwhile, 2-TFBP both promotes the deposition/exfoliation of Li+ at anode-electrolyte interfaces and regulates Li deposition by K+ cations through the electrostatic mechanism. This work presents that 2-TFBP has a great application prospect as a functional additive for high-voltage and high-energy-density lithium metal batteries.

13.
Phys Chem Chem Phys ; 25(17): 12200-12206, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37073673

RESUMO

Work function (WF) modulation is a crucial descriptor for carbon-based electrodes in optoelectronic, catalytic, and energy storage applications. Boron-doped graphene is envisioned as a highly promising anode material for alkali metal-ion batteries (MIBs). However, due to the large structural space concerning various doping concentrations, the lack of both datasets and effective methods hinders the discovery of boron-doped graphene with a high WF that generally leads to strong adsorption. Herein, we propose a machine-learning-assisted approach to discover the target, where a Crystal Graph Convolutional Neural Network was developed to efficiently predict the WF for all possible configurations. As a result, the B5C27 structure is found to have the highest WF in the entire space containing 566 211 structures. In addition, it is revealed that the adsorption energy of alkali metals is linearly related to the WF of the substrate. Therefore, the screened B5C27 is investigated as an anode for Li/Na/K-ion batteries, and it possesses a higher theoretical specific capacity of 2262/2546/1131 mA h g-1 for Li/Na/K-ion batteries compared with that of pristine graphene and other boron-doped graphene. Our work provides an effective way to locate possible high-WF structures in heteroatom-doped systems, which may accelerate future screening of promising adsorbents for alkali metals.

14.
Artigo em Inglês | MEDLINE | ID: mdl-36758114

RESUMO

Na3V2(PO4)3 (NVP) is one of the most potential cathode materials for sodium-ion batteries (SIBs), but its actual electrochemical performance is limited by the defects of large electron and ion transfer resistance. Multicomponent design is considered an effective method to optimize the conductivity of NVP electrodes. Therefore, Cr and Si are added in NVP to form a multielement component of Na3V1.9Cr0.1(PO4)2.9(SiO4)0.1 (NVP-CS). It is confirmed that 3d electrons of Cr are beneficial for improving the conductivity and increasing the average potential by activating V4+/V5+. Theoretical calculations show that the introduction of Si changes the electronic structure of V and O, thus promoting the electrochemical reaction of V3+/V4+ to exert higher capacity. Due to the coordination of the two elements, a lower migration barrier is obtained in NVP-CS. Specifically, NVP-CS retains the advantages of single-doped electrodes very well (capacity retention of 90% after 300 cycles at 1 C and a high capacity of 94.1 mA h g-1 at 5 C, compared to NVP with only 82.6% capacity retention at 1 C and 59.4 mA h g-1 at 5 C). The excellent electrochemical performance results show that NVP can be successfully optimized by the introduction of Cr and Si. This work can provide some inspiration for multicomponent material research of cathode materials.

15.
Adv Mater ; 35(7): e2208533, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36448504

RESUMO

Electrocatalytic two-electron oxygen reduction (2e- ORR) to hydrogen peroxide (H2 O2 ) is attracting broad interest in diversified areas including paper manufacturing, wastewater treatment, production of liquid fuels, and public sanitation. Current efforts focus on researching low-cost, large-scale, and sustainable electrocatalysts with high activity and selectivity. Here a large-scale H2 O2 electrocatalysts based on metal-free carbon fibers with a fluorine and sulfur dual-doping strategy is engineered. Optimized samples yield with a high onset potential of 0.814 V versus reversible hydrogen electrode (RHE), an almost ideal 2e- pathway selectivity of 99.1%, outperforming most of the recently reported carbon-based or metal-based electrocatalysts. First principle theoretical computations and experiments demonstrate that the intermolecular charge transfer coupled with electron spin redistribution from fluorine and sulfur dual-doping is the crucial factor contributing to the enhanced performances in 2e- ORR. This work opens the door to the design and implementation of scalable, earth-abundant, highly selective electrocatalysts for H2 O2 production and other catalytic fields of industrial interest.

16.
Opt Lett ; 48(1): 81-84, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563374

RESUMO

Bolometers based on graphene have demonstrated outstanding performance with high sensitivity and short response time. In situ adjustment of bolometers is very important in various applications, but it is still difficult to implement in many systems. Here we propose a gate-tunable bolometer based on two strongly coupled graphene nanomechanical resonators. Both resonators are exposed to the same light field, and we can measure the properties of one bolometer by directly tracking the resonance frequency shifts, and indirectly measure the other bolometer through mechanical coupling. We find that the sensitivity and the response bandwidth of both bolometers can be independently adjusted by tuning the corresponding gate voltages. Moreover, the properties of the indirectly measured bolometer show a dependence on the coupling between the two resonators, with other parameters being fixed. Our method has the potential to optimize the design of large-scale bolometer arrays, and open new horizons in infrared/terahertz astronomy and communication systems.

17.
ChemSusChem ; 15(19): e202201121, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35919954

RESUMO

Na3 V2 (PO4 )3 (NVP) is a widely studied cathode material for sodium-ion batteries because of its high ionic conductivity and attractive charge/discharge plateau (3.4 V vs. Na/Na+ ). However, its poor electronic conductivity and severe volume expansion during sodium storage need to be addressed before its intensive application could be realized. Herein, boron-doped NVP was synthesized through a facile electrospinning method. By adding boric acid into the reaction mixture during electrospinning followed by carbonization, boron could be directly inserted into the carbon matrix, giving rise to B-doped carbon nanofiber wrapped NVP. By tuning the doping amount, the boron-containing configurations could be facilely manipulated, playing different roles in promoting the sodium storage properties of the composite. Based on the calculation results, BC2 O enhanced sodium diffusion by lowering the energy barrier, while BCO2 improved the structural stability. Due to these specific functionalities of the configurations, the as-prepared composite with a balanced amount of BC2 O and BCO2 demonstrated superior sodium storage capacity of 113 mAh g-1 at 1 C, outstanding long cycling performance of 103 mAh g-1 at 10 C, and retained 91 mAh g-1 after 1500 cycles. This gave rise to a capacity loss of only 0.08‰ per cycle, much better than the undoped counterpart.

18.
Small ; 18(38): e2203495, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35989102

RESUMO

Atomically dispersed iron immobilized on nitrogen-doped carbon catalyst has attracted enormous attention for CO2 electroreduction, but still suffers from low current density and poor selectivity. Herein, atomically dispersed FeN5 active sites supported on defective N-doped carbon successfully formed by a multistep thermal treatment strategy with the aid of dicyandiamide are reported. This dual-functional strategy can not only construct intrinsic carbon defects by selectively etching pyridinic-N and pyrrolic-N, but also introduces an additional N from the neighboring carbon layer coordinating to the commonly observed FeN4 , thus creating an FeN5 active site supported on defective porous carbon nanofibers (FeN5 /DPCF) with a local 3D configuration. The optimized FeN5 /DPCF achieves a high CO Faradaic efficiency (>90%) over a wide potential range of -0.4 to -0.6 V versus RHE with a maximal FECO of 93.1%, a high CO partial current density of 9.4 mA cm-2 at the low overpotential of 490 mV, and a remarkable turnover frequency of 2965 h-1 . Density functional theory calculations reveal that the synergistic effect between the FeN5 sites and carbon defects can enhance electronic localization, thus reducing the energy barrier for the CO2 reduction reaction and suppressing the hydrogen evolution reaction, giving rise to the superior activity and selectivity.

19.
J Phys Condens Matter ; 34(37)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35779515

RESUMO

As an inherent property of the device itself, nonlinearity in micro-/nano- electromechanical resonators is difficult to eliminate, and it has shown a wide range of applications in basic research, sensing and other fields. While many application scenarios require tunability of the nonlinearity, inherent nonlinearity of a mechanical resonator is difficult to be changed. Here, we report the experimental observation of a Joule heating induced tuning effect on the nonlinearity of graphene mechanical resonators. We fabricated multiple graphene mechanical resonators and detected their resonant properties by an optical interference method. The mechanical vibration of the resonators will enter from the linear to the nonlinear intervals if we enhance the external driving power to a certain value. We found that at a fixed drive power, the nonlinearity of a mechanical resonator can be tuned by applying a dc bias current on the resonator itself. The tuning mechanism could be explained by the nonlinear amplitude-frequency dependence theory. Our results may provide a research platform for the study of mechanical nonlinearity by using atomic-thin layer materials.

20.
J Phys Condens Matter ; 34(33)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35675806

RESUMO

Polarity introduced by inversion symmetry broken along <111> direction has strong impacts on the physical properties and morphological characteristics of III-V component nanostructure. Take III-V component semiconductor InSb as an example, we systematically investigate the growth sequence and morphology evolution of InSb (111) on Bi (001) substrate from adatoms to bilayers. We discovered and verified that the presence of amorphous-like morphology of monolayer InSb was attributed to the strong interaction between mix-polarity InSb and Bi substrate. Further, our comprehensive energy investigations of bilayer InSb reveal that an amorphous first layer will be crystallized and polarized driven by the low surface energy of the reconstructed second layers. Phase diagrams were developed to describe the ongoing polarization process of bilayer InSb under various chemical environments as a function of deposition time. The growth mechanism and polarity phase diagram of bilayer InSb on Bi substrate may advance the progress of polarity controllable growth of low-dimensional InSb nanostructure as well as other polar III-V compound semiconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA