Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 10: 1171750, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38130437

RESUMO

Classical swine fever (CSF) is an infectious disease caused by Classical swine fever virus (CSFV), which is characterized by depression, high fever, extensive skin bleeding, leukopenia, anorexia, alternating constipation, and diarrhea. Hemorrhagic infarction of the spleen is the main characteristic pathological change following CSFV infection. Large-scale outbreaks of CSF are rare in China and are mainly distributed regionally. The clinical symptoms of CSF are not obvious, and show variation from typical to atypical symptoms, which makes diagnosis based on clinical symptoms and pathology challenging. In recent years, the incidence of CSF-immunized pig farms in China has increased and new CSFV gene subtypes have appeared, posing new challenges to the prevention and control of CSF in China. Changes in metabolites caused by viral infection reflect the pathogenic process. Metabonomics can reveal the trace metabolites of organisms; however, plasma metabonomics of CSFV-infected pigs have rarely been investigated. Therefore, we used an established pig CSFV infection model to study changes in plasma metabolites. The results showed significant differences in forty-five plasma metabolites at different time periods after CSFV infection in pigs, with an increase in twenty-five metabolites and a decrease in twenty metabolites. These changed metabolites were mainly attributed to the tricarboxylic acid cycle, amino acid cycle, sugar metabolism, and fat metabolism. Thirteen metabolic pathways changed significantly in CSFV-infected pigs, including tricarboxylic acid cycle, inositol phosphate metabolism, glycine, serine and threonine metabolism,lysine degradation, alanine, aspartate and glutamic acid metabolism, pantothenate and CoA biosynthesis, ß-alanine metabolism, lysine degradation, arginine and proline metabolism, glycerolipid metabolism, phenylalanine metabolism, arachidonic acid metabolism, linoleic acid metabolism. Among these, changes in fatty acid biosynthesis and metabolism occurred at all time periods post-infection. These results indicate that CSFV infection in pigs could seriously alter metabolic pathways.

2.
Vaccines (Basel) ; 10(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36016192

RESUMO

Japanese encephalitis is a mosquito-borne zoonotic epidemic caused by the Japanese encephalitis virus (JEV). JEV is not only the leading cause of Asian viral encephalitis, but also one of the leading causes of viral encephalitis worldwide. To understand the genetic evolution and E protein characteristics of JEV, 263 suspected porcine JE samples collected from South China from 2011 to 2018 were inspected. It was found that 78 aborted porcine fetuses were JEV-nucleic-acid-positive, with a positive rate of 29.7%. Furthermore, four JEV variants were isolated from JEV-nucleic-acid-positive materials, namely, CH/GD2011/2011, CH/GD2014/2014, CH/GD2015/2015, and CH/GD2018/2018. The cell culture and virus titer determination of four JEV isolates showed that four JEV isolates could proliferate stably in Vero cells, and the virus titer was as high as 108.5 TCID 50/mL. The whole-genome sequences of four JEV isolates were sequenced. Based on the phylogenetic analysis of the JEV E gene and whole genome, it was found that CH/GD2011/2011 and CH/GD2015/2015 belonged to the GIII type, while CH/GD2014/2014 and CH/GD2018/2018 belonged to the GI type, which was significantly different from that of the JEV classical strain CH/BJ-1/1995. Bioinformatics tools were used to analyze the E protein phosphorylation site, glycosylation site, B cell antigen epitope, and modeled 3D structures of E protein in four JEV isolates. The analysis of the prevalence of JEV and the biological function of E protein can provide a theoretical basis for the prevention and control of JEV and the design of antiviral drugs.

3.
Vaccines (Basel) ; 10(4)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35455351

RESUMO

Classical swine fever (CSF) is a severe disease that has caused serious economic losses for the global pig industry and is widely prevalent worldwide. In recent decades, CSF has been effectively controlled through compulsory vaccination with a live CSF vaccine (C strain). It has been successfully eradicated in some countries or regions. However, the re-emergence of CSF in Japan and Romania, where it had been eradicated, has brought increased attention to the disease. Because the traditional C-strain vaccine cannot distinguish between vaccinated and infected animals (DIVA), this makes it difficult to fight CSF. The emergence of marker vaccines is considered to be an effective strategy for the decontamination of CSF. This paper summarizes the progress of the new CSF marker vaccine and provides a detailed overview of the vaccine design ideas and immunization effects. It also provides a methodology for the development of a new generation of vaccines for CSF and vaccine development for other significant epidemics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA