Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(4): 1750-1758, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38215439

RESUMO

Inertial microfluidics has demonstrated its ability to focus particles in a passive and straightforward manner. However, achieving flow-rate- and particle-size-insensitive focusing in large-dimension channels with a simple design remains challenging. In this study, we developed a spiral microfluidic with a large-dimension channel to achieve inertial focusing. By designing a unique "big buffering area" and a "small buffering area" in the spiral microchannel, we observed the stabilization and acceleration of secondary flow. Our optimized design allowed for efficient (>99.9%) focusing of 15 µm particles within a wide range of flow rates (0.5-4.5 mL/min) during a long operation duration (0-60 min). Additionally, we achieved effective (>95%) focusing of different-sized particles (7, 10, 15, and 30 µm) and three types of tumor cells (K562, HeLa, and MCF-7) near the inner wall of the 1 mm wide outlet when applying different flow rates (1-3 mL/min). Finally, successful 3D cell focusing was achieved within an optimized device, with the cells positioned at a distance of 50 µm from the wall. Our strategy of stabilizing and accelerating Dean-like secondary flow through the unique configuration of a "big buffering area" and a "small buffering area" proved to be highly effective in achieving inertial focusing that is insensitive to the flow rate and particle size, particularly in large-dimension channels. Consequently, it shows great potential for use in hand-operated microfluidic tools for flow cytometry.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Humanos , Microfluídica/métodos , Tamanho da Partícula , Citometria de Fluxo/métodos , Aceleração
2.
Anal Chem ; 95(49): 18278-18286, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38016025

RESUMO

Although microfluidic devices have made remarkable strides in blood cell separation, there is still a need for further development and improvement in this area. Herein, we present a novel ultralow aspect ratio (H/W = 1:36) spiral channel microfluidic device with ordered micro-obstacles for sheathless and flow-rate-insensitive blood cell separation. By introducing ordered micro-obstacles into the spiral microchannels, reduced magnitude fluctuations in secondary flow across different loops can be obtained through geometric confinement. As a result, the unique Dean-like secondary flow can effectively enhance the separation efficiency of particles in different sizes ranging from 3 to 15 µm. Compared to most existing microfluidic devices, our system offers several advantages of easy manufacturing, convenient operation, long-term stability, highly efficient performance (up to 99.70% rejection efficiency, including platelets), and most importantly, insensitivity to cell sizes as well as flow rates (allowing for efficient separation of different-sized blood cells in a wide flow rate from 1.00 to 2.50 mL/min). The unique characteristics, such as ultralow aspect ratio, sequential micro-obstacles, and controlled secondary flow, make our device a promising solution for practical plasma extraction in biomedical research and clinical applications.


Assuntos
Técnicas Analíticas Microfluídicas , Plasma , Células Sanguíneas , Plaquetas , Aceleração
3.
BMC Genomics ; 24(1): 708, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996801

RESUMO

BACKGROUND: Forsythia suspensa (Thunb.) Vahl is a valuable ornamental and medicinal plant. Although the nuclear and chloroplast genomes of F. suspensa have been published, its complete mitochondrial genome sequence has yet to be reported. In this study, the genomic DNA of F. suspensa yellowish leaf material was extracted, sequenced by using a mixture of Illumina Novaseq6000 short reads and Oxford Nanopore PromethION long reads, and the sequencing data were assembled and annotated. RESULT: The F. suspensa mitochondrial genome was obtained in the length of 535,692 bp with a circular structure, and the GC content was 44.90%. The genome contains 60 genes, including 36 protein-coding genes, 21 tRNA genes, and three rRNA genes. We further analyzed RNA editing of the protein-coding genes, relative synonymous codon usage, and sequence repeats based on the genomic data. There were 25 homologous sequences between F. suspensa mitochondria and chloroplast genome, which involved the transfer of 8 mitochondrial genes, and 9473 homologous sequences between mitochondrial and nuclear genomes. Analysis of the nucleic acid substitution rate, nucleic acid diversity, and collinearity of protein-coding genes of the F. suspensa mitochondrial genome revealed that the majority of genes may have undergone purifying selection, exhibiting a slower rate of evolution and a relatively conserved structure. Analysis of the phylogenetic relationships among different species revealed that F. suspensa was most closely related to Olea europaea subsp. Europaea. CONCLUSION: In this study, we sequenced, assembled, and annotated a high-quality F. suspensa mitochondrial genome. The results of this study will enrich the mitochondrial genome data of Forsythia, lay a foundation for the phylogenetic development of Forsythia, and promote the evolutionary analysis of Oleaceae species.


Assuntos
Forsythia , Genoma de Cloroplastos , Genoma Mitocondrial , Ácidos Nucleicos , Plantas Medicinais , Forsythia/genética , Forsythia/química , Genoma Mitocondrial/genética , Filogenia , Plantas Medicinais/química , Plantas Medicinais/genética
4.
Anal Chem ; 95(45): 16649-16658, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37917001

RESUMO

Microfluidic technologies enabling the control of secondary flow are essential for the successful separation of blood cells, a process that is beneficial for a wide range of medical research and clinical diagnostics. Herein, we introduce a dimension-confined microfluidic device featuring a double-spiral channel designed to regulate secondary flows, thereby enabling high-throughput isolation of blood for plasma extraction. By integrating a sequence of micro-obstacles within the double-spiral microchannels, the stable and enhanced Dean-like secondary flow across each loop can be generated. This setup consequently prompts particles of varying diameters (3, 7, 10, and 15 µm) to form different focusing states. Crucially, this system is capable of effectively separating blood cells of different sizes with a cell throughput of (2.63-3.36) × 108 cells/min. The concentration of blood cells in outlet 2 increased 3-fold, from 1.46 × 108 to 4.37 × 108, while the number of cells, including platelets, exported from outlets 1 and 3 decreased by a factor of 608. The engineering approach manipulating secondary flow for plasma extraction points to simplicity in fabrication, ease of operation, insensitivity to cell size, high throughput, and separation efficiency, which has potential utility in propelling the development of miniaturized diagnostic devices in the field of biomedical science.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Células Sanguíneas , Plasma , Plaquetas
5.
Front Pharmacol ; 14: 1183393, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538180

RESUMO

Introduction: Astragalus membranaceus Fisch. ex Bunge is a traditional botanical drug with antibacterial, antioxidant, antiviral, and other biological activities. In the process of industrialization of A. membranaceus, most of the aboveground stems and leaves are discarded without resource utilization except for a small amount of low-value applications such as composting. This study explored the antibacterial activity of A. membranaceus stem and leaf extracts to evaluate its potential as a feed antibiotic substitute. Materials and methods: The antibacterial activity of the flavonoid, saponin, and polysaccharide fractions in A. membranaceus stems and leaves was evaluated by the disk diffusion method. The inhibitory activity of the flavonoid fraction from A. membranaceus stems and leaves on B. cereus was explored from the aspects of the growth curve, cell wall, cell membrane, biofilm, bacterial protein, and virulence factors. On this basis, the flavonoid fraction in A. membranaceus stems and leaves were isolated and purified by column chromatography to determine the main antibacterial components. Results: The flavonoid fraction in A. membranaceus stems and leaves had significant inhibitory activity against B. cereus, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were 1.5625 and 6.25 mg/mL, respectively. A. membranaceus stem and leaf flavonoid fraction can induce death of B. cereus in many ways, such as inhibiting growth, destroying cell wall and cell membrane integrity, inhibiting biofilm formation, inhibiting bacterial protein synthesis, and downregulating virulence factor expression. In addition, it was clear that the main flavonoid with antibacterial activity in A. membranaceus stems and leaves was isoliquiritigenin. Molecular docking showed that isoliquiritigenin could form a hydrogen bonding force with FtsZ. Conclusion: A. membranaceus stem and leaf flavonoid fractions had significant inhibitory activity against B. cereus, and the main chemical composition was isoliquiritigenin.

6.
Microsyst Nanoeng ; 9: 46, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064165

RESUMO

Isolation and manipulation of single cells play a crucial role in drug screening. However, previously reported single-cell drug screening lacked multiple-dose concentration gradient studies, which limits their ability to predict drug performance accurately. To solve this problem, we constructed a multiconcentration gradient generator in which a Tai Chi-spiral mixer can accelerate solution mixing in a short time and produce a linear concentration gradient. Later, a gradient generator combined with a single-cell capture array was adopted to investigate the effects of single or combined doses of 5-fluorouracil and cisplatin on human hepatoma cells and human breast carcinoma cells (at the single-cell level). The results showed that both drugs were effective in inhibiting the growth of cancer cells, and the combination was more effective for human hepatoma cells. In addition, the relationship between the biomechanical heterogeneity (e.g., deformability and size) of tumor cells and potential drug resistance at the single-cell level was investigated, indicating that small and/or deformable cells were more resistant than large and/or less deformable cells. The device provides a simple and reliable platform for studying the optimal dosage of different drug candidates at the single-cell level and effectively screening single-agent chemotherapy regimens and combination therapies.

7.
J Econ Entomol ; 116(2): 574-583, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36757382

RESUMO

The black cutworm, Agrotis ipsilon (Hufnagel), a seasonal migrant and a prolific generalist, can feed on nearly all vegetables and grain crops, causing considerable economic impacts on a global scale. Given its cryptic nature, A. ipsilon management has been extremely challenging. Chitin synthase (CHS), a key enzyme involved in chitin biosynthetic pathway and crucially important for the growth and development of insects, is the molecular target of chitin synthesis inhibitors, a group of broad-spectrum insecticides that is compatible with Integrated Pest Management practices. In this study, we investigated the potential of targeting chitin synthases to control A. ipsilon. As a result, two chitin synthases, AiCHS1 and AiCHS2, were identified and cloned from A. ipsilon. The temporal-spatial distribution study showed that AiCHS1 was predominantly expressed at the pupal stage and most abundant among tissues of head capsule and integument, while AiCHS2 was mainly expressed at the sixth instar larval stage and tissues of foregut and midgut. RNAi-based functional study confirmed gene silencing caused significant reduction in the expression levels of the corresponding mRNA, as well as resulted in abnormal pupation and mortality, respectively. Furthermore, under the treatment of lufenuron, a chitin synthesis inhibitor, A. ipsilon responded with an elevated expression in AiCHS1 and AiCHS2, while larvae showed difficulty in shedding old cuticle, and a cumulative mortality of 69.24% at 48 h. In summary, chitin synthases are crucial for chitin biosynthesis in A. ipsilon and can be targeted for the control (e.g., RNAi-based biopesticides) of this devastating insect pest.


Assuntos
Inseticidas , Lepidópteros , Mariposas , Animais , Quitina Sintase , Larva , Controle Biológico de Vetores/métodos , Quitina
8.
Ultrason Sonochem ; 90: 106190, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36215890

RESUMO

Astragalus membranaceus is a medicinal and edible species in China, with a variety of biological activities. This study evaluated the reuse potential of A. membranaceus waste as a source of food antioxidants. Antioxidant and antifungal activities of flavonoids, polysaccharides, and saponins from A. membranaceus stems and leaves were evaluated. Results showed that inhibition rate of flavonoids on six tested fungi reaches 100 % at a concentration of 5 mg/mL, and the antioxidant test demonstrated satisfactory antioxidant activity. On this basis, an extremely economical ultrasonic-assisted extraction of flavonoids from A. membranaceus stems and leaves was developed and optimized via response surface methodology (RSM). Optimized conditions included an extraction time of 35 min, ethanol concentration of 75 %, liquid-solid ratio of 40 mL/g, and extraction temperature of 58 °C, in which the extraction yield of flavonoids was 22.0270 ± 2.5739 mg/g. The total flavonoids were separated and purified using activity-guided isolation technology, and frac. ccd with strong antioxidant activity were analyzed via HPLC-MS/MS. Results showed that main components are isoquercitrin and astragalin. This study can provide a potential innovative application for the development of natural food antioxidants from A. membranaceus waste.


Assuntos
Antioxidantes , Flavonoides , Antioxidantes/farmacologia , Flavonoides/análise , Astragalus propinquus , Espectrometria de Massas em Tandem , Extratos Vegetais/farmacologia , Folhas de Planta/química
9.
Front Plant Sci ; 13: 884957, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755689

RESUMO

Scutellaria baicalensis Georgi. (Chinese skullcap or Huang-qin) is an extremely crucial medicinal plant in the Labiate family, and the color of its flowers naturally appears purple. However, during the long-term cultivation of S. baicalensis, very few plants of S. baicalensis also present white and purple-red flower colors under the same ecological conditions. However, the complex metabolic and transcriptional networks underlying color formation in white, purple-red, and purple flowers of S. baicalensis remain largely unclarified. To gain an insight into this issue, we conducted transcriptome and metabolomic profiling to elucidate the anthocyanin synthesis metabolic pathway in the flowers of S. baicalensis, and to identify the differentially expressed candidate genes potentially involved in the biosynthesis of anthocyanins. The results showed that 15 anthocyanins were identified, among which cyanidin 3-rutinoside and delphin chloride were the primary anthocyanins, and accumulation was significantly related to the flower color changes of S. baicalensis. Furthermore, the down-regulation of SbDFR (Sb02g31040) reduced the anthocyanin levels in the flowers of S. baicalensis. The differential expression of the Sb3GT (Sb07g04780 and Sb01g72290) gene in purple and purple-red flowers affected anthocyanin accumulation, suggesting that anthocyanin levels were closely associated with the expression of SbDFR and Sb3GT, which play important roles in regulating the anthocyanin biosynthesis process of S. baicalensis flowers. Transcriptomic analysis revealed that transcription factors WRKY, bHLH, and NAC were also highly correlated with anthocyanin accumulation, especially for NAC35, which positively regulated SbDFR (Sb02g31040) gene expression and modulated anthocyanin biosynthesis in flower color variation of S. baicalensis. Overall, this study presents the first experimental evidence for the metabolomic and transcriptomic profiles of S. baicalensis in response to flower coloration, which provides a foundation for dynamic metabolic engineering and plant breeding, and to understand floral evolution in S. baicalensis plants.

10.
Micromachines (Basel) ; 12(7)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199145

RESUMO

Inertial microfluidics enables fluid and particle manipulation for biomedical and clinical applications. Herein, we developed a simple semicircular microchannel with an ultra-low aspect ratio to interrogate the unique formations of the helical vortex and Dean vortex by introducing order micro-obstacles. The purposeful and powerful regulation of dimensional confinement in the microchannel achieved significantly improved fluid mixing effects and fluid and particle manipulation in a high-throughput, highly efficient and easy-to-use way. Together, the results offer insights into the geometry-induced multi-vortex mechanism, which may contribute to simple, passive, continuous operations for biochemical and clinical applications, such as the detection and isolation of circulating tumor cells for cancer diagnostics.

11.
Sheng Wu Gong Cheng Xue Bao ; 37(4): 1312-1323, 2021 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-33973444

RESUMO

Dihydroflavanol-4-reductase (Dfr) is a key enzyme that regulates the synthesis of anthocyanin and proanthocyanidin in the flavonoid biosynthesis pathway. To investigate the difference of dfr gene in Scutellaria baicalensis Georgi with different colors in the same ecological environment, three complete full-length sequences of dfr gene were cloned from the cDNA of S. baicalensis with white, purple-red and purple colors using homologous cloning and RACE techniques. The three genes were named Sbdfr1, Sbdfr2 and Sbdfr3, respectively, and their corresponding structures were analyzed. The results showed that all three Dfr proteins have highly conserved NADPH binding sites and substrate-specific binding sites. Phylogenetic analysis showed that they are closely related to that of the known S. viscidula (ACV49882.1). Analysis of key structural domains and 3D models revealed differences in the catalytically active regions on the surface of all three Dfr proteins, and their unique structural characteristics may provide favorable conditions for studying the substrate specificity of different Dfr proteins. qRT-PCR analysis shows that dfr was expressed at different level in all tissues except the roots of S. baicalensis in full-bloom. During floral development, the expression level of dfr in white and purple-flowered Scutellaria showed an overall upward trend. In purple-red-flowered Scutellaria, the expression first slowly increased, followed by a decrease, and then rapidly increased to the maximum. This research provides a theoretical basis for further exploring the mechanism and function of Dfr substrate selectivity, and are of great scientific value for elucidating the molecular mechanism of floral color variation in S. baicalensis.


Assuntos
Antocianinas , Scutellaria baicalensis , Clonagem Molecular , Cor , Filogenia , Scutellaria baicalensis/genética
12.
Plant Pathol J ; 37(2): 162-172, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33866758

RESUMO

Soybean mosaic virus (SMV) is the predominant viral pathogen that affects the yield and quality of soybean. The natural host range for SMV is very narrow, and generally limited to Leguminosae. However, we found that SMV can naturally infect Pinellia ternata and Atractylodes macrocephala. In order to clarify the molecular mechanisms underlying the crossfamily infection of SMV, we used double-stranded RNA extraction, rapid amplification of cDNA ends polymerase chain reaction and Gibson assembly techniques to carry out SMV full-length genome amplification from susceptible soybeans and constructed an infectious cDNA clone for SMV. The genome of the SMV Shanxi isolate (SMV-SX) consists of 9,587 nt and encodes a polyprotein consisting of 3,067 aa. SMV-SX and SMV-XFQ008 had the highest nucleotide and amino acid sequence identities of 97.03% and 98.50%, respectively. A phylogenetic tree indicated that SMV-SX and SMV-XFQ018 were clustered together, sharing the closest relationship. We then constructed a pSMV-SX infectious cDNA clone by Gibson assembly technology and used this clone to inoculate soybean and Ailanthus altissima; the symptoms of these hosts were similar to those caused by the virus isolated from natural infected plant tissue. This method of construction not only makes up for the time-consuming and laborious defect of traditional methods used to construct infectious cDNA clones, but also avoids the toxicity of the Potyvirus special sequence to Escherichia coli, thus providing a useful cloning strategy for the construction of infectious cDNA clones for other viruses and laying down a foundation for the further investigation of SMV cross-family infection mechanisms.

13.
Micromachines (Basel) ; 12(1)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466925

RESUMO

The field of inertial microfluidics has been significantly advanced in terms of application to fluid manipulation for biological analysis, materials synthesis, and chemical process control. Because of their superior benefits such as high-throughput, simplicity, and accurate manipulation, inertial microfluidics designs incorporating channel geometries generating Dean vortexes and helical vortexes have been studied extensively. However, existing technologies have not been studied by designing low-aspect-ratio microchannels to produce multi-vortexes. In this study, an inertial microfluidic device was developed, allowing the generation and regulation of the Dean vortex and helical vortex through the introduction of micro-obstacles in a semicircular microchannel with ultra-low aspect ratio. Multi-vortex formations in the vertical and horizontal planes of four dimension-confined curved channels were analyzed at different flow rates. Moreover, the regulation mechanisms of the multi-vortex were studied systematically by altering the micro-obstacle length and channel height. Through numerical simulation, the regulation of dimensional confinement in the microchannel is verified to induce the Dean vortex and helical vortex with different magnitudes and distributions. The results provide insights into the geometry-induced secondary flow mechanism, which can inspire simple and easily built planar 2D microchannel systems with low-aspect-ratio design with application in fluid manipulations for chemical engineering and bioengineering.

14.
Plant Pathol J ; 36(5): 468-475, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33082731

RESUMO

Malva vein clearing virus (MVCV) is a member of the Potyvirus species, and has a negative impact on the aesthetic development of Alcea rosea. It was first reported in Germany in 1957, but its complete genome sequence data are still scarce. In the present work, A. rosea leaves with vein-clearing and mosaic symptoms were sampled and analyzed with small RNA deep sequencing. By denovo assembly the raw sequences of virus-derived small interfering RNAs (vsiRs) and whole genome amplification of malva vein cleaning virus SX strain (MVCV-SX) by specific primers targeting identified contig gaps, the full-length genome sequences (9,645 nucleotides) of MVCV-SX were characterized, constituting of an open reading frame that is long enough to encode 3,096 amino acids. Phylogenetic analysis showed that MVCV-SX was clustered with euphorbia ringspot virus and yam mosaic virus. Further analyses of the vsiR profiles revealed that the most abundant MVCV-vsiRs were between 21 and 22 nucleotides in length and a strong bias was found for "A" and "U" at the 5'-terminal residue. The results of polarity assessment indicated that the amount of sense strand was almost equal to that of the antisense strand in MVCV-vsiRs, and the main hot-spot region in MVCV-SX genome was found at cylindrical inclusion. In conclusion, our findings could provide new insights into the RNA silencing-mediated host defence mechanism in A. rosea infected with MVCV-SX, and offer a basis for the prevention and treatment of this virus disease.

15.
Sheng Wu Gong Cheng Xue Bao ; 36(5): 949-958, 2020 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-32567278

RESUMO

Soybean mosaic virus (SMV), one of the major viral diseases of Pinellia ternata (Thunb.) Breit., has had a serious impact on its yield and quality. The construction of viral infectious clones is a powerful tool for reverse genetics research on viral gene function and interaction between virus and host. To clarify the molecular mechanism of SMV infection in Pinellia ternata, it is particularly important to construct the SMV full-length cDNA infectious clone. Therefore, the infectious clone of Soybean mosaic virus Shanxi Pinellia ternata isolate (SMV-SXBX) was constructed in this study by Gibson in vitro recombination system, and the healthy Pinellia ternata leaves were inoculated by Agrobacterium infiltration, further through mechanical passage and RT-PCR, confirming that the 3' end of the SMV-SXBX infectious clone had a stable infectivity when it contained 56-nt of poly(A) tail. This method is not only convenient and efficient, but also avoids the instability of SMV infectious clones in Escherichia coli. The construction of SMV full-length infectious cDNA clones laid the foundation for further study on the molecular mechanism of SMV replication and pathogenesis.


Assuntos
Pinellia , Potyvirus , DNA Complementar , Pinellia/virologia , Doenças das Plantas/virologia , Potyvirus/isolamento & purificação , Potyvirus/metabolismo
16.
Micromachines (Basel) ; 11(5)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408585

RESUMO

With the continuous development of cancer therapy, conventional animal models have exposed a series of shortcomings such as ethical issues, being time consuming and having an expensive cost. As an alternative method, microfluidic devices have shown advantages in drug screening, which can effectively shorten experimental time, reduce costs, improve efficiency, and achieve a large-scale, high-throughput and accurate analysis. However, most of these microfluidic technologies are established for narrow-range drug-concentration screening based on sensitive but limited flow rates. More simple, easy-to operate and wide-ranging concentration-gradient constructions for studying tumor cell-drug interactions in real-time have remained largely out of reach. Here, we proposed a simple and compact device that can quickly construct efficient and reliable drug-concentration gradients with a wide range of flow rates. The dynamic study of concentration-gradient formation based on successive spiral mixer regulations was investigated systematically and quantitatively. Accurate, stable, and controllable dual drug-concentration gradients were produced to evaluate simultaneously the efficacy of the anticancer drug against two tumor cell lines (human breast adenocarcinoma cells and human cervical carcinoma cells). Results showed that paclitaxel had dose-dependent effects on the two tumor cell lines under the same conditions, respectively. We expect this device to contribute to the development of microfluidic chips as a portable and economical product in terms of the potential of concentration gradient-related biochemical research.

17.
Phytopathology ; 110(6): 1189-1198, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32141384

RESUMO

The harpin protein Hpa1 has various beneficial effects in plants, such as promoting plant growth and inducing pathogen resistance. Our previous study found that Hpa1 could significantly alleviate the mosaic symptoms of tobacco mosaic virus (TMV) in Pinellia ternata, indicating that Hpa1 can effectively stimulate resistance. Here, the potential mechanism of disease resistance and field applicability of Hpa1 against TMV in P. ternata were further investigated. The results showed that 15 µg ml-1 Hpa1 had stronger antiviral activity than the control, and its protective effect was better than its curative effect. Furthermore, Hpa1 could significantly induce an increase in defense-related enzyme activity, including polyphenol oxidase, peroxidase, catalase, and superoxide dismutase, as well as increase the expression of disease resistance-related genes (PR1, PR3, PR5, and PDF1.2). Concurrently, Hpa1 significantly increased the content of some disease resistance-related substances, including hydrogen peroxide, phenolics, and callose, whereas the content of malondialdehyde was reduced. In addition, field application analysis demonstrated that Hpa1 could effectively elicit a defense response against TMV in P. ternata. Our findings propose a mechanism by which Hpa1 can prevent TMV infection in Pinellia by inducing systemic resistance, thereby providing an environmentally friendly approach for the use of Hpa1 in large-scale applications to improve TMV resistance in Pinellia.


Assuntos
Pinellia , Vírus do Mosaico do Tabaco , Resistência à Doença , Humanos , Doenças das Plantas , Nicotiana
18.
Talanta ; 208: 120477, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31816765

RESUMO

Research and development of innovative targeted therapies is a great challenge in the fight against cancer. Although many treatment methods are currently available, there is no simple and effective system for promptly conducting anti-cancer drug screening and dose-response evaluation of the cancer patients to the drug. Herein, we developed an easy and compact flow rate independent microfluidic chip that can rapidly construct three concentration gradients of multiple solutes based on Dean flow under a wide range of flow rates. Chemical gradient dynamics were investigated systematically and quantitatively. Three stable, accurate, and controllable drug gradients were generated to evaluate treatments of two tumor cell lines (MCF-7 and HepG2). Results showed the dose- and time-dependent antitumor effects of the drugs, indicating the suitability of the proposed system to evaluate the individual actions and interactions of the anti-cancer drugs (doxorubicin and cisplatin) on one tumor cell line under the same conditions. In addition, cell viability in the microfluidic chip under gradient conditions showed a linear relationship to the viability of the traditional culture experiment. In summary, our microfluidic device can be used to develop insensitive techniques to operational conditions for simultaneously establishing multi-drug concentration gradients, which has the potential to promote the development of specific drug screening tools for targeting multiple vulnerabilities of tumor cells and evaluating the most effective personalized treatment technique.


Assuntos
Ensaios de Seleção de Medicamentos Antitumorais/métodos , Dispositivos Lab-On-A-Chip , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Doxorrubicina/farmacologia , Células Hep G2 , Humanos , Células MCF-7 , Técnicas Analíticas Microfluídicas , Medicina de Precisão
19.
Virol J ; 15(1): 15, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29347937

RESUMO

BACKGROUND: Tomato zonate spot virus (TZSV), a new species of genus Tospovirus, caused significant losses in yield and problems in quality of many important vegetables and ornamentals in Southwest China and posed a serious threat to important economic crops for the local farmers. A convenient and reliable method was urgently needed for rapid detection and surveillance of TZSV. METHODS: The nucleocapsid protein (N) of TZSV was expressed in Escherichia coli and purified, and was used as the antigen to immunize BALB/c mice. Three monoclonal antibodies (mAbs) 3A2, 5D2 and 5F7 against TZSV were obtained through the hybridoma technique. The mAb 3A2 was conjugated with colloid gold as detecting reagent; mAb 5D2 was coated on a porous nitrocellulose membrane as the detection line and protein A was coated as the control line respectively. The colloid gold immunochromatographic (GICA) strip was assembled. RESULTS: The analysis of Dot-ELISA and Western blot showed that the obtained three independent lines of mAbs 3A2, 5D2 and 5F7 specifically recognized TZSV N. Based on the assembly of GICA strip, the detection of TZSV was achieved by loading the infected sap onto the test strip for visual inspection. The analysis could be completed within 5-10 min. No cross-reaction occurred between TZSV and other tested viruses. The visual detection limit of the test strip for TZSV was 800 fold dilutions of TZSV-infected leaf samples. CONCLUSION: The mAbs were specific and the colloidal GICA strip developed in this study was convenient, fast and reliable for the detection of TZSV. The method could be applied for the rapid diagnosis and surveillance of TZSV in the field.


Assuntos
Anticorpos Monoclonais , Cromatografia de Afinidade , Coloide de Ouro , Doenças das Plantas/virologia , Fitas Reagentes , Solanum lycopersicum/virologia , Tospovirus/classificação , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Cromatografia de Afinidade/métodos , Ensaio de Imunoadsorção Enzimática , Camundongos , Proteínas Recombinantes , Sensibilidade e Especificidade , Tospovirus/genética , Tospovirus/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/isolamento & purificação
20.
Soft Matter ; 13(47): 8882-8885, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29167852

RESUMO

A new dual acylhydrazone-functionalized gelator (L) has been synthesized, which behaves as a thermal-responsive supramolecular organogel (L-gel) in DMSO. This L-gel exhibits very weak fluorescence based on the photoinduced electron transfer (PET) mechanism. The L-gel can recognize Al3+ and assemble into an enhanced blue-light-emitting supramolecular metallogel (Al@gel).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...