Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 246: 112293, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37354605

RESUMO

A series of O-phenanthroline silver(I) complexes were synthesized and characterized by infrared (IR) spectroscopy, mass spectrometry (MS), 1H nuclear magnetic resonance (NMR) spectroscopy and single-crystal X-ray crystallography. The cytotoxicity of the silver(I) complex (P-131) was evaluated in the cancer cell lines HCT-116, HeLa, and MDA-MB-231 and the normal cell line LO2 via MTT assays. The 50% inhibition concentration (IC50) of P-131 on HCT116 cell line is 0.86 ± 0.03 µM. It is far lower than the IC50 value of cisplatin (9.08 ± 1.10 µM), the IC50 value of normal cell LO2 (76.20 ± 0.48 µM) is much higher than that of cisplatin (3.99 ± 0.74 µM), indicating that its anticancer effect is stronger than that of cisplatin, and its biological safety is greater than that of cisplatin. Furthermore, anticancer mechanistic studies showed that P-131 inhibited cell proliferation by blocking DNA synthesis and acted temporally on the nucleus in dividing HCT-116 cells. Moreover, P-131 increased intracellular reactive oxygen species (ROS) levels in a dose-dependent manner. Notably, 10 mg/kg P-131 showed better antitumor effects than oxaliplatin in an HCT116 human colorectal xenograft mouse model without inducing toxicity. Moreover, the microdilution broth method was used to evaluate the antimicrobial properties of P-131 against Pseudomonas aeruginosa and Candida albicans. A biofilm eradication study was also performed using the crystal violet method and confocal laser scanning microscopy.


Assuntos
Adenocarcinoma , Anti-Infecciosos , Antineoplásicos , Neoplasias Colorretais , Complexos de Coordenação , Humanos , Animais , Camundongos , Cisplatino/farmacologia , Prata/farmacologia , Prata/química , Anti-Infecciosos/farmacologia , Células HeLa , Neoplasias Colorretais/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Proliferação de Células , Linhagem Celular Tumoral
2.
Int J Nanomedicine ; 18: 225-241, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36660337

RESUMO

Background: Gallium (III) metal-organic complexes have been shown to have the ability to inhibit tumor growth, but the poor water solubility of many of the complexes precludes further application. The use of materials with high biocompatibility as drug delivery carriers for metal-organic complexes to enhance the bioavailability of the drug is a feasible approach. Methods: Here, we modified the ligands of gallium 8-hydroxyquinolinate complex with good clinical anticancer activity by replacing the 8-hydroxyquinoline ligands with 5-bromo-8-hydroxyquinoline (HBrQ), and the resulting Ga(III) + HBrQ complex had poor water solubility. Two biocompatible materials, bovine serum albumin (BSA) and graphene oxide (GO), were used to synthesize the corresponding Ga(III) + HBrQ complex nanoparticles (NPs) BSA/Ga/HBrQ NPs and GO/Ga/HBrQ NPs in different ways to enhance the drug delivery of the metal complex. Results: Both of BSA/Ga/HBrQ NPs and GO/Ga/HBrQ NPs can maintain stable existence in different solution states. In vitro cytotoxicity test showed that two nanomedicines had excellent anti-proliferation effect on HCT116 cells, which shown higher level of intracellular ROS and apoptosis ratio than that of cisplatin and oxaliplatin. In addition, the superior emissive properties of BSA/Ga/HBrQ NPs and GO/Ga/HBrQ NPs allow their use for in vivo imaging showing highly effective therapy in HCT116 tumor-bearing mouse models. Conclusion: The use of biocompatible materials for the preparation of NPs against poorly biocompatible metal-organic complexes to construct drug delivery systems is a promising strategy that can further improve drug delivery and therapeutic efficacy.


Assuntos
Antineoplásicos , Portadores de Fármacos , Gálio , Grafite , Nanopartículas Metálicas , Oxiquinolina , Animais , Humanos , Camundongos , Materiais Biocompatíveis , Linhagem Celular Tumoral , Portadores de Fármacos/síntese química , Gálio/química , Grafite/química , Células HCT116 , Nanopartículas Metálicas/análise , Nanopartículas/análise , Oxiquinolina/química , Tamanho da Partícula , Soroalbumina Bovina/farmacologia , Água , Antineoplásicos/síntese química , Antineoplásicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...