Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733345

RESUMO

The ATPase family AAA+ domain containing 2 (ATAD2) protein and its paralog ATAD2B have a C-terminal bromodomain (BRD) that functions as a reader of acetylated lysine residues on histone proteins. Using a structure-function approach, we investigated the ability of the ATAD2/B BRDs to select acetylated lysine among multiple histone post-translational modifications. The ATAD2B BRD can bind acetylated histone ligands that also contain adjacent methylation or phosphorylation marks, while the presence of these modifications significantly weakened the acetyllysine binding activity of the ATAD2 BRD. Our structural studies provide mechanistic insights into how ATAD2/B BRD-binding pocket residues coordinate the acetyllysine group in the context of adjacent post-translational modifications. Furthermore, we investigated how sequence changes in amino acids of the histone ligands impact the recognition of an adjacent acetyllysine residue. Our study highlights how the interplay between multiple combinations of histone modifications influences the reader activity of the ATAD2/B BRDs, resulting in distinct binding modes.

2.
Proteins ; 91(10): 1394-1406, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37213073

RESUMO

Chemotaxis is a fundamental process whereby bacteria seek out nutrient sources and avoid harmful chemicals. For the symbiotic soil bacterium Sinorhizobium meliloti, the chemotaxis system also plays an essential role in the interaction with its legume host. The chemotactic signaling cascade is initiated through interactions of an attractant or repellent compound with chemoreceptors or methyl-accepting chemotaxis proteins (MCPs). S. meliloti possesses eight chemoreceptors to mediate chemotaxis. Six of these receptors are transmembrane proteins with periplasmic ligand-binding domains (LBDs). The specific functions of McpW and McpZ are still unknown. Here, we report the crystal structure of the periplasmic domain of McpZ (McpZPD) at 2.7 Å resolution. McpZPD assumes a novel fold consisting of three concatenated four-helix bundle modules. Through phylogenetic analyses, we discovered that this helical tri-modular domain fold arose within the Rhizobiaceae family and is still evolving rapidly. The structure, offering a rare view of a ligand-free dimeric MCP-LBD, reveals a novel dimerization interface. Molecular dynamics calculations suggest ligand binding will induce conformational changes that result in large horizontal helix movements within the membrane-proximal domains of the McpZPD dimer that are accompanied by a 5 Å vertical shift of the terminal helix toward the inner cell membrane. These results suggest a mechanism of transmembrane signaling for this family of MCPs that entails both piston-type and scissoring movements. The predicted movements terminate in a conformation that closely mirrors those observed in related ligand-bound MCP-LBDs.


Assuntos
Proteínas de Bactérias , Sinorhizobium meliloti , Proteínas de Bactérias/química , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Filogenia , Proteínas Quimiotáticas Aceptoras de Metil/química , Proteínas Quimiotáticas Aceptoras de Metil/genética , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Quimiotaxia/fisiologia
3.
Proteins ; 91(1): 91-98, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35978488

RESUMO

In this paper, we report the structural analysis of dihydroorotase (DHOase) from the hyperthermophilic and barophilic archaeon Methanococcus jannaschii. DHOase catalyzes the reversible cyclization of N-carbamoyl-l-aspartate to l-dihydroorotate in the third step of de novo pyrimidine biosynthesis. DHOases form a very diverse family of enzymes and have been classified into types and subtypes with structural similarities and differences among them. This is the first archaeal DHOase studied by x-ray diffraction. Its structure and comparison with known representatives of the other subtypes help define the structural features of the archaeal subtype. The M. jannaschii DHOase is found here to have traits from all subtypes. Contrary to expectations, it has a carboxylated lysine bridging the two Zn ions in the active site, and a long catalytic loop. It is a monomeric protein with a large ß sandwich domain adjacent to the TIM barrel. Loop 5 is similar to bacterial type III and the C-terminal extension is long.


Assuntos
Di-Hidro-Orotase , Methanocaldococcus , Di-Hidro-Orotase/química , Di-Hidro-Orotase/metabolismo , Methanocaldococcus/metabolismo , Domínio Catalítico , Catálise , Ácido Aspártico
4.
Int J Biol Macromol ; 223(Pt A): 316-326, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36328269

RESUMO

Plasmodium falciparum requires a two-host system, moving between Anopheles mosquito and humans, to complete its life cycle. To overcome such dynamic growth conditions its histones undergo various post-translational modifications to regulate gene expression. The P. falciparum Bromodomain Protein 1 (PfBDP1) has been shown to interact with acetylated lysine modifications on histone H3 to regulate the expression of invasion-related genes. Here, we investigated the ability of the PfBDP1 bromodomain to interact with acetyllsyine modifications on additional core and variant histones. A crystal structure of the PfBDP1 bromodomain (PfBDP1-BRD) reveals it contains the conserved bromodomain fold, but our comparative analysis between the PfBDP1-BRD and human bromodomain families indicates it has a unique binding mechanism. Solution NMR spectroscopy and ITC binding assays carried out with acetylated histone ligands demonstrate that it preferentially recognizes tetra-acetylated histone H4, and we detected weaker interactions with multi-acetylated H2A.Z in addition to the previously reported interactions with acetylated histone H3. Our findings indicate PfBDP1 may play additional roles in the P. falciparum life cycle, and the distinctive features of its bromodomain binding pocket could be leveraged for the development of new therapeutic agents to help overcome the continuously evolving resistance of P. falciparum against currently available drugs.


Assuntos
Histonas , Plasmodium falciparum , Humanos , Histonas/metabolismo , Ligantes , Plasmodium falciparum/metabolismo , Ligação Proteica , Domínios Proteicos , Acetilação , Fator de Transcrição TFIIIB/metabolismo
5.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502039

RESUMO

The ATPase Family, AAA domain-containing protein 2 (ATAD2) bromodomain (BRD) has a canonical bromodomain structure consisting of four α-helices. ATAD2 functions as a co-activator of the androgen and estrogen receptors as well as the MYC and E2F transcription factors. ATAD2 also functions during DNA replication, recognizing newly synthesized histones. In addition, ATAD2 is shown to be up-regulated in multiple forms of cancer including breast, lung, gastric, endometrial, renal, and prostate. Furthermore, up-regulation of ATAD2 is strongly correlated with poor prognosis in many types of cancer, making the ATAD2 bromodomain an innovative target for cancer therapeutics. In this study, we describe the recognition of histone acetyllysine modifications by the ATAD2 bromodomain. Residue-specific information on the complex formed between the histone tail and the ATAD2 bromodomain, obtained through nuclear magnetic resonance spectroscopy (NMR) and X-ray crystallography, illustrates key residues lining the binding pocket, which are involved in coordination of di-acetylated histone tails. Analytical ultracentrifugation, NMR relaxation data, and isothermal titration calorimetry further confirm the monomeric state of the functionally active ATAD2 bromodomain in complex with di-acetylated histone ligands. Overall, we describe histone tail recognition by ATAD2 BRD and illustrate that one acetyllysine group is primarily engaged by the conserved asparagine (N1064), the "RVF" shelf residues, and the flexible ZA loop. Coordination of a second acetyllysine group also occurs within the same binding pocket but is essentially governed by unique hydrophobic and electrostatic interactions making the di-acetyllysine histone coordination more specific than previously presumed.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/química , Proteínas de Ligação a DNA/química , Histonas/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Acetilação , Proteínas de Ligação a DNA/metabolismo , Código das Histonas , Histonas/química , Humanos , Ligação Proteica , Domínios Proteicos
6.
J Biol Chem ; 297(4): 101193, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34529974

RESUMO

Bacterial signaling histidine kinases (HKs) have long been postulated to function exclusively through linear signal transduction chains. However, several HKs have recently been shown to form complex multikinase networks (MKNs). The most prominent MKN, involving the enzymes RetS and GacS, controls the switch between the motile and biofilm lifestyles in the pathogenic bacterium Pseudomonas aeruginosa. While GacS promotes biofilm formation, RetS counteracts GacS using three distinct mechanisms. Two are dephosphorylating mechanisms. The third, a direct binding between the RetS and GacS HK regions, blocks GacS autophosphorylation. Focusing on the third mechanism, we determined the crystal structure of a cocomplex between the HK region of RetS and the dimerization and histidine phosphotransfer (DHp) domain of GacS. This is the first reported structure of a complex between two distinct bacterial signaling HKs. In the complex, the canonical HK homodimerization interface is replaced by a strikingly similar heterodimeric interface between RetS and GacS. We further demonstrate that GacS autophosphorylates in trans, thus explaining why the formation of a RetS-GacS complex inhibits GacS autophosphorylation. Using mutational analysis in conjunction with bacterial two-hybrid and biofilm assays, we not only corroborate the biological role of the observed RetS-GacS interactions, but also identify a residue critical for the equilibrium between the RetS-GacS complex and the respective RetS and GacS homodimers. Collectively, our findings suggest that RetS and GacS form a domain-swapped hetero-oligomer during the planktonic growth phase of P. aeruginosa before unknown signals cause its dissociation and a relief of GacS inhibition to promote biofilm formation.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Histidina Quinase/metabolismo , Multimerização Proteica , Pseudomonas aeruginosa/fisiologia , Proteínas de Bactérias/genética , Histidina Quinase/genética , Fosforilação
7.
Nature ; 597(7874): 97-102, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34261126

RESUMO

An ideal therapeutic anti-SARS-CoV-2 antibody would resist viral escape1-3, have activity against diverse sarbecoviruses4-7, and be highly protective through viral neutralization8-11 and effector functions12,13. Understanding how these properties relate to each other and vary across epitopes would aid the development of therapeutic antibodies and guide vaccine design. Here we comprehensively characterize escape, breadth and potency across a panel of SARS-CoV-2 antibodies targeting the receptor-binding domain (RBD). Despite a trade-off between in vitro neutralization potency and breadth of sarbecovirus binding, we identify neutralizing antibodies with exceptional sarbecovirus breadth and a corresponding resistance to SARS-CoV-2 escape. One of these antibodies, S2H97, binds with high affinity across all sarbecovirus clades to a cryptic epitope and prophylactically protects hamsters from viral challenge. Antibodies that target the angiotensin-converting enzyme 2 (ACE2) receptor-binding motif (RBM) typically have poor breadth and are readily escaped by mutations despite high neutralization potency. Nevertheless, we also characterize a potent RBM antibody (S2E128) with breadth across sarbecoviruses related to SARS-CoV-2 and a high barrier to viral escape. These data highlight principles underlying variation in escape, breadth and potency among antibodies that target the RBD, and identify epitopes and features to prioritize for therapeutic development against the current and potential future pandemics.


Assuntos
Anticorpos Amplamente Neutralizantes/imunologia , COVID-19/virologia , Reações Cruzadas/imunologia , Evasão da Resposta Imune , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Afinidade de Anticorpos , Anticorpos Amplamente Neutralizantes/química , COVID-19/imunologia , Vacinas contra COVID-19/química , Vacinas contra COVID-19/imunologia , Linhagem Celular , Cricetinae , Epitopos de Linfócito B/química , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Feminino , Humanos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Masculino , Mesocricetus , Pessoa de Meia-Idade , Modelos Moleculares , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Vacinologia , Tratamento Farmacológico da COVID-19
8.
bioRxiv ; 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33851154

RESUMO

An ideal anti-SARS-CoV-2 antibody would resist viral escape 1-3 , have activity against diverse SARS-related coronaviruses 4-7 , and be highly protective through viral neutralization 8-11 and effector functions 12,13 . Understanding how these properties relate to each other and vary across epitopes would aid development of antibody therapeutics and guide vaccine design. Here, we comprehensively characterize escape, breadth, and potency across a panel of SARS-CoV-2 antibodies targeting the receptor-binding domain (RBD), including S309 4 , the parental antibody of the late-stage clinical antibody VIR-7831. We observe a tradeoff between SARS-CoV-2 in vitro neutralization potency and breadth of binding across SARS-related coronaviruses. Nevertheless, we identify several neutralizing antibodies with exceptional breadth and resistance to escape, including a new antibody (S2H97) that binds with high affinity to all SARS-related coronavirus clades via a unique RBD epitope centered on residue E516. S2H97 and other escape-resistant antibodies have high binding affinity and target functionally constrained RBD residues. We find that antibodies targeting the ACE2 receptor binding motif (RBM) typically have poor breadth and are readily escaped by mutations despite high neutralization potency, but we identify one potent RBM antibody (S2E12) with breadth across sarbecoviruses closely related to SARS-CoV-2 and with a high barrier to viral escape. These data highlight functional diversity among antibodies targeting the RBD and identify epitopes and features to prioritize for antibody and vaccine development against the current and potential future pandemics.

9.
Cell ; 183(4): 1024-1042.e21, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32991844

RESUMO

Analysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune protection and identifying targets for vaccine design. In a cohort of 647 SARS-CoV-2-infected subjects, we found that both the magnitude of Ab responses to SARS-CoV-2 spike (S) and nucleoprotein and nAb titers correlate with clinical scores. The receptor-binding domain (RBD) is immunodominant and the target of 90% of the neutralizing activity present in SARS-CoV-2 immune sera. Whereas overall RBD-specific serum IgG titers waned with a half-life of 49 days, nAb titers and avidity increased over time for some individuals, consistent with affinity maturation. We structurally defined an RBD antigenic map and serologically quantified serum Abs specific for distinct RBD epitopes leading to the identification of two major receptor-binding motif antigenic sites. Our results explain the immunodominance of the receptor-binding motif and will guide the design of COVID-19 vaccines and therapeutics.


Assuntos
Anticorpos Neutralizantes/imunologia , Mapeamento de Epitopos/métodos , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2 , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/química , Anticorpos Antivirais/sangue , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Reações Antígeno-Anticorpo , Betacoronavirus/imunologia , Betacoronavirus/isolamento & purificação , Betacoronavirus/metabolismo , Sítios de Ligação , COVID-19 , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Epitopos/química , Epitopos/imunologia , Humanos , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Cinética , Simulação de Dinâmica Molecular , Pandemias , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Ligação Proteica , Domínios Proteicos/imunologia , Estrutura Quaternária de Proteína , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
10.
RNA ; 26(12): 1767-1776, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32848042

RESUMO

Exoribonuclease-resistant RNAs (xrRNAs) are discrete elements that block the progression of 5' to 3' exoribonucleases using specifically folded RNA structures. A recently discovered class of xrRNA is widespread in several genera of plant-infecting viruses, within both noncoding and protein-coding subgenomic RNAs. The structure of one such xrRNA from a dianthovirus revealed three-dimensional details of the resistant fold but did not answer all questions regarding the conservation and diversity of this xrRNA class. Here, we present the crystal structure of a representative polerovirus xrRNA that contains sequence elements that diverge from the previously solved structure. This new structure rationalizes previously unexplained sequence conservation patterns and shows interactions not present in the first structure. Together, the structures of these xrRNAs from dianthovirus and polerovirus genera support the idea that these plant virus xrRNAs fold through a defined pathway that includes a programmed intermediate conformation. This work deepens our knowledge of the structure-function relationship of xrRNAs and shows how evolution can craft similar RNA folds from divergent sequences.


Assuntos
Exorribonucleases/metabolismo , Luteoviridae/genética , Mutação , Conformação de Ácido Nucleico , Estabilidade de RNA , RNA Viral/química , RNA Viral/genética , Regiões 3' não Traduzidas , Sequência de Bases , Cristalização , Genoma Viral , Homologia de Sequência
11.
J Biochem ; 168(2): 191-202, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32246827

RESUMO

Biliverdin reductase B (BLVRB) family members are general flavin reductases critical in maintaining cellular redox with recent findings revealing that BLVRB alone can dictate cellular fate. However, as opposed to most enzymes, the BLVRB family remains enigmatic with an evolutionarily changing active site and unknown structural and functional consequences. Here, we applied a multi-faceted approach that combines X-ray crystallography, NMR and kinetics methods to elucidate the structural and functional basis of the evolutionarily changing BLVRB active site. Using a panel of three BLVRB isoforms (human, lemur and hyrax) and multiple human BLVRB mutants, our studies reveal a novel evolutionary mechanism where coenzyme 'clamps' formed by arginine side chains at two co-evolving positions within the active site serve to slow coenzyme release (Positions 14 and 78). We find that coenzyme release is further slowed by the weaker binding substrate, resulting in relatively slow turnover numbers. However, different BLVRB active sites imposed by either evolution or mutagenesis exhibit a surprising inverse relationship between coenzyme release and substrate turnover that is independent of the faster chemical step of hydride transfer also measured here. Collectively, our studies have elucidated the role of the evolutionarily changing BLVRB active site that serves to modulate coenzyme release and has revealed that coenzyme release is coupled to substrate turnover.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Termodinâmica , Cristalografia por Raios X , Humanos , Modelos Moleculares , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/isolamento & purificação , Conformação Proteica
12.
Sci Rep ; 10(1): 3300, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32094450

RESUMO

Aedes aegypti is the primary vector for transmission of Dengue, Zika and chikungunya viruses. Previously it was shown that Dengue virus infection of the mosquito led to an in increased expression of the odorant binding protein 22 (AeOBP22) within the mosquito salivary gland and that siRNA mediated knockdown of AeOBP22 led to reduced mosquito feeding behaviors. Insect OBPs are implicated in the perception, storage and transport of chemosensory signaling molecules including air-borne odorants and pheromones. AeOBP22 is unusual as it is additionally expressed in multiple tissues, including the antenna, the male reproductive glands and is transferred to females during reproduction, indicating multiple roles in the mosquito life cycle. However, it is unclear what role it plays in these tissues and what ligands it interacts with. Here we present solution and X-ray crystallographic studies that indicate a potential role of AeOBP22 binding to fatty acids, and that the specificity for longer chain fatty acids is regulated by a conformational change in the C-terminal tail that leads to creation of an enlarged binding cavity that enhances binding affinity. This study sheds light onto the native ligands for AeOBP22 and provides insight into its potential functions in different tissues.


Assuntos
Aedes/metabolismo , Ácidos Graxos/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Odorantes , Animais , Apoproteínas/química , Ácido Araquidônico/metabolismo , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Cinética , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Soluções , Homologia Estrutural de Proteína
13.
mBio ; 10(6)2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31744917

RESUMO

To understand the evolution of Verona integron-encoded metallo-ß-lactamase (VIM) genes (blaVIM) and their clinical impact, microbiological, biochemical, and structural studies were conducted. Forty-five clinically derived VIM variants engineered in a uniform background and expressed in Escherichia coli afforded increased resistance toward all tested antibiotics; the variants belonging to the VIM-1-like and VIM-4-like families exhibited higher MICs toward five out of six antibiotics than did variants belonging to the widely distributed and clinically important VIM-2-like family. Generally, maximal MIC increases were observed when cephalothin and imipenem were tested. Additionally, MIC determinations under conditions with low zinc availability suggested that some VIM variants are also evolving to overcome zinc deprivation. The most profound increase in resistance was observed in VIM-2-like variants (e.g., VIM-20 H229R) at low zinc availability. Biochemical analyses reveal that VIM-2 and VIM-20 exhibited similar metal binding properties and steady-state kinetic parameters under the conditions tested. Crystal structures of VIM-20 in the reduced and oxidized forms at 1.25 Å and 1.37 Å resolution, respectively, show that Arg229 forms an additional salt bridge with Glu171. Differential scanning fluorimetry of purified proteins and immunoblots of periplasmic extracts revealed that this difference increases thermostability and resistance to proteolytic degradation when zinc availability is low. Therefore, zinc scarcity appears to be a selective pressure driving the evolution of multiple metallo-ß-lactamase families, although compensating mutations use different mechanisms to enhance resistance.IMPORTANCE Antibiotic resistance is a growing clinical threat. One of the most serious areas of concern is the ability of some bacteria to degrade carbapenems, drugs that are often reserved as last-resort antibiotics. Resistance to carbapenems can be conferred by a large group of related enzymes called metallo-ß-lactamases that rely on zinc ions for function and for overall stability. Here, we studied an extensive panel of 45 different metallo-ß-lactamases from a subfamily called VIM to discover what changes are emerging as resistance evolves in clinical settings. Enhanced resistance to some antibiotics was observed. We also found that at least one VIM variant developed a new ability to remain more stable under conditions where zinc availability is limited, and we determined the origin of this stability in atomic detail. These results suggest that zinc scarcity helps drive the evolution of this resistance determinant.


Assuntos
Farmacorresistência Bacteriana , Zinco/metabolismo , beta-Lactamases/química , beta-Lactamases/metabolismo , Carbapenêmicos/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Mutação , Conformação Proteica , Estabilidade Proteica , beta-Lactamases/genética
14.
FEBS Lett ; 593(15): 2030-2039, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31177526

RESUMO

Our early efforts to find a covalent inhibitor of mortalin, a member of the 70 kD heat shock protein (Hsp70) family, led us to solve the structure of the mortalin nucleotide-binding domain (NBD) in complex with N6-propargyladenosine-5'-diphosphate. The acquired structure emphasizes the ability of the nucleotide-binding pocket to accommodate modified ADP compounds. A library of ADP analogs modified at either the 2- or N6-positions of adenosine was screened against the mortalin-NBD. Competitive inhibition and binding assays of the analogs demonstrate that modifications at the 2- or N6-positions have potential to bind and inhibit mortalin uniquely compared to other Hsp70 homologs, and that modifications at the 2-position confer the greatest selectivity in binding and inhibition of the mortalin-NBD.


Assuntos
Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Difosfato de Adenosina/análogos & derivados , Sítios de Ligação/efeitos dos fármacos , Clonagem Molecular , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Proteínas de Choque Térmico HSP70/genética , Humanos , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química
15.
Struct Dyn ; 6(2): 024703, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31041362

RESUMO

Enzymes are known to adopt various conformations at different points along their catalytic cycles. Here, we present a comprehensive analysis of 15 isomorphous, high resolution crystal structures of the enzyme phosphoglucomutase from the bacterium Xanthomonas citri. The protein was captured in distinct states critical to function, including enzyme-substrate, enzyme-product, and enzyme-intermediate complexes. Key residues in ligand recognition and regions undergoing conformational change are identified and correlated with the various steps of the catalytic reaction. In addition, we use principal component analysis to examine various subsets of these structures with two goals: (1) identifying sites of conformational heterogeneity through a comparison of room temperature and cryogenic structures of the apo-enzyme and (2) a priori clustering of the enzyme-ligand complexes into functionally related groups, showing sensitivity of this method to structural features difficult to detect by traditional methods. This study captures, in a single system, the structural basis of diverse substrate recognition, the subtle impact of covalent modification, and the role of ligand-induced conformational change in this representative enzyme of the α-D-phosphohexomutase superfamily.

16.
J Phys Chem B ; 123(16): 3383-3396, 2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-30933555

RESUMO

HSPA9, the gene coding for the mitochondrial chaperone mortalin, is involved in various cellular roles such as mitochondrial protein import, folding, degradation, Fe-S cluster biogenesis, mitochondrial homeostasis, and regulation of the antiapoptotic protein p53. Mutations in the HSPA9 gene, particularly within the region coding for the nucleotide-binding domain (NBD), cause the autosomal disorder known as EVEN-PLUS syndrome. The resulting mutants R126W and Y128C are located on the surface of the mortalin-NBD near the binding interface with the interdomain linker (IDL). We used differential scanning fluorimetry (DSF), biolayer interferometry, X-ray crystallography, ATP hydrolysis assays, and Rosetta docking simulations to study the structural and functional consequences of the EVEN-PLUS syndrome-associated R126W and Y128C mutations within the mortalin-NBD. These results indicate that the surface mutations R126W and Y128C have far-reaching effects that disrupt ATP hydrolysis, interdomain linker binding, and thermostability and increase the propensity for aggregation. The structural differences observed provide insight into how the conformations of mortalin differ from other heat shock protein 70 (Hsp70) homologues. Combined, our biophysical and structural studies contribute to the understanding of the molecular basis for how disease-associated mortalin mutations affect mortalin functionality and the pathogenesis of EVEN-PLUS syndrome.


Assuntos
Doenças Genéticas Inatas/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Mutação , Difosfato de Adenosina/metabolismo , Proteínas de Choque Térmico HSP70/química , Humanos , Modelos Moleculares , Mutagênese , Conformação Proteica , Dobramento de Proteína , Temperatura
17.
Proc Natl Acad Sci U S A ; 116(12): 5514-5522, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30819901

RESUMO

Interleukin-37 (IL-37), a member of the IL-1 family of cytokines, is a fundamental suppressor of innate and acquired immunities. Here, we used an integrative approach that combines biophysical, biochemical, and biological studies to elucidate the unique characteristics of IL-37. Our studies reveal that single amino acid mutations at the IL-37 dimer interface that result in the stable formation of IL-37 monomers also remain monomeric at high micromolar concentrations and that these monomeric IL-37 forms comprise higher antiinflammatory activities than native IL-37 on multiple cell types. We find that, because native IL-37 forms dimers with nanomolar affinity, higher IL-37 only weakly suppresses downstream markers of inflammation whereas lower concentrations are more effective. We further show that IL-37 is a heparin binding protein that modulates this self-association and that the IL-37 dimers must block the activity of the IL-37 monomer. Specifically, native IL-37 at 2.5 nM reduces lipopolysaccharide (LPS)-induced vascular cell adhesion molecule (VCAM) protein levels by ∼50%, whereas the monomeric D73K mutant reduced VCAM by 90% at the same concentration. Compared with other members of the IL-1 family, both the N and the C termini of IL-37 are extended, and we show they are disordered in the context of the free protein. Furthermore, the presence of, at least, one of these extended termini is required for IL-37 suppressive activity. Based on these structural and biological studies, we present a model of IL-37 interactions that accounts for its mechanism in suppressing innate inflammation.


Assuntos
Tolerância Imunológica , Imunidade Inata , Interleucina-1/metabolismo , Linhagem Celular , Cristalografia por Raios X , Humanos , Tolerância Imunológica/imunologia , Tolerância Imunológica/fisiologia , Interleucina-1/genética , Interleucina-1/fisiologia , Espectroscopia de Ressonância Magnética , Multimerização Proteica
18.
Nat Commun ; 9(1): 5074, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30498211

RESUMO

Structured RNA elements, programmed RNA conformational changes, and interactions between different RNA domains underlie many modes of regulating gene expression, mandating studies to understand the foundational principles that govern these phenomena. Exploring the structured 3' untranslated region (UTR) of a viral RNA, we discovered that different contexts of the 3'-UTR confer different abilities to enhance translation of an associated open reading frame. In one context, ribosome-induced conformational changes in a 'sensor' RNA domain affect a separate RNA 'functional' domain, altering translation efficiency. The structure of the entire 3'-UTR reveals that structurally distinct domains use a spine of continuously stacked bases and a strut-like linker to create a conduit for communication within the higher-order architecture. Thus, this 3'-UTR RNA illustrates how RNA can use programmed conformational changes to sense the translation status of an upstream open reading frame, then create a tuned functional response by communicating that information to other RNA elements.


Assuntos
Regiões 3' não Traduzidas/genética , RNA Ribossômico/genética , Regiões 5' não Traduzidas/genética , Conformação de Ácido Nucleico , Fases de Leitura Aberta/genética , Biossíntese de Proteínas , RNA Viral/genética
19.
J Biol Chem ; 293(51): 19572-19585, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30355735

RESUMO

Clinical isolates of Yersinia, Klebsiella, and Escherichia coli frequently secrete the small molecule metallophore yersiniabactin (Ybt), which passivates and scavenges transition metals during human infections. YbtT is encoded within the Ybt biosynthetic operon and is critical for full Ybt production in bacteria. However, its biosynthetic function has been unclear because it is not essential for Ybt production by the in vitro reconstituted nonribosomal peptide synthetase/polyketide synthase (NRPS/PKS) pathway. Here, we report the structural and biochemical characterization of YbtT. YbtT structures at 1.4-1.9 Å resolution possess a serine hydrolase catalytic triad and an associated substrate chamber with features similar to those previously reported for low-specificity type II thioesterases (TEIIs). We found that YbtT interacts with the two major Ybt biosynthetic proteins, HMWP1 (high-molecular-weight protein 1) and HMWP2 (high-molecular-weight protein 2), and hydrolyzes a variety of aromatic and acyl groups from their phosphopantetheinylated carrier protein domains. In vivo YbtT titration in uropathogenic E. coli revealed a distinct optimum for Ybt production consistent with a tradeoff between clearing both stalled inhibitory intermediates and productive Ybt precursors from HMWP1 and HMWP2. These results are consistent with a model in which YbtT maintains cellular Ybt biosynthesis by removing nonproductive, inhibitory thioesters that form aberrantly at multiple sites on HMWP1 and HMWP2.


Assuntos
Enterobacteriaceae/enzimologia , Ácido Graxo Sintases/química , Ácido Graxo Sintases/metabolismo , Fenóis/metabolismo , Tiazóis/metabolismo , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Enterobacteriaceae/metabolismo , Ácido Graxo Sintases/genética , Hidrólise , Cinética , Modelos Moleculares , Mutação , Tioléster Hidrolases/genética
20.
Mol Cancer Ther ; 17(12): 2633-2642, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30242091

RESUMO

Antibody-drug conjugates (ADCs) are a therapeutic modality that enables the targeted delivery of cytotoxic drugs to cancer cells. Identification of active payloads with unique mechanisms of action is a key aim of research efforts in the field. Herein, we report the development of inhibitors of nicotinamide phosphoribosyltransferase (NAMPT) as a novel payload for ADC technology. NAMPT is a component of a salvage biosynthetic pathway for NAD, and inhibition of this enzyme results in disruption of primary cellular metabolism leading to cell death. Through derivatization of the prototypical NAMPT inhibitor FK-866, we identified potent analogues with chemical functionality that enables the synthesis of hydrophilic enzyme-cleavable drug linkers. The resulting ADCs displayed NAD depletion in both cell-based assays and tumor xenografts. Antitumor efficacy is demonstrated in five mouse xenograft models using ADCs directed to indication-specific antigens. In rat toxicology models, a nonbinding control ADC was tolerated at >10-fold the typical efficacious dose used in xenografts. Moderate, reversible hematologic effects were observed with ADCs in rats, but there was no evidence for the retinal and cardiac toxicities reported for small-molecule inhibitors. These findings introduce NAMPT inhibitors as active and well-tolerated payloads for ADCs with promise to improve the therapeutic window of NAMPT inhibition and enable application in clinical settings.


Assuntos
Sistemas de Liberação de Medicamentos , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Imunoconjugados/farmacologia , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Feminino , Humanos , Imunoconjugados/química , Camundongos SCID , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...