Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Immunol ; 6(66): eabf2489, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34932384

RESUMO

While serum-circulating complement destroys invading pathogens, intracellularly active complement, termed the "complosome," functions as a vital orchestrator of cell-metabolic events underlying T cell effector responses. Whether intracellular complement is also nonredundant for the activity of myeloid immune cells is currently unknown. Here, we show that monocytes and macrophages constitutively express complement component (C) 5 and generate autocrine C5a via formation of an intracellular C5 convertase. Cholesterol crystal sensing by macrophages induced C5aR1 signaling on mitochondrial membranes, which shifted ATP production via reverse electron chain flux toward reactive oxygen species generation and anaerobic glycolysis to favor IL-1ß production, both at the transcriptional level and processing of pro­IL-1ß. Consequently, atherosclerosis-prone mice lacking macrophage-specific C5ar1 had ameliorated cardiovascular disease on a high-cholesterol diet. Conversely, inflammatory gene signatures and IL-1ß produced by cells in unstable atherosclerotic plaques of patients were normalized by a specific cell-permeable C5aR1 antagonist. Deficiency of the macrophage cell-autonomous C5 system also protected mice from crystal nephropathy mediated by folic acid. These data demonstrate the unexpected intracellular formation of a C5 convertase and identify C5aR1 as a direct modulator of mitochondrial function and inflammatory output from myeloid cells. Together, these findings suggest that the complosome is a contributor to the biologic processes underlying sterile inflammation and indicate that targeting this system could be beneficial in macrophage-dependent diseases, such as atherosclerosis.


Assuntos
Inflamação/imunologia , Interleucina-1beta/biossíntese , Macrófagos/imunologia , Receptor da Anafilatoxina C5a/imunologia , Animais , Linhagem Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor da Anafilatoxina C5a/deficiência
2.
Sci Immunol ; 6(58)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827897

RESUMO

Patients with coronavirus disease 2019 (COVID-19) present a wide range of acute clinical manifestations affecting the lungs, liver, kidneys and gut. Angiotensin converting enzyme (ACE) 2, the best-characterized entry receptor for the disease-causing virus SARS-CoV-2, is highly expressed in the aforementioned tissues. However, the pathways that underlie the disease are still poorly understood. Here, we unexpectedly found that the complement system was one of the intracellular pathways most highly induced by SARS-CoV-2 infection in lung epithelial cells. Infection of respiratory epithelial cells with SARS-CoV-2 generated activated complement component C3a and could be blocked by a cell-permeable inhibitor of complement factor B (CFBi), indicating the presence of an inducible cell-intrinsic C3 convertase in respiratory epithelial cells. Within cells of the bronchoalveolar lavage of patients, distinct signatures of complement activation in myeloid, lymphoid and epithelial cells tracked with disease severity. Genes induced by SARS-CoV-2 and the drugs that could normalize these genes both implicated the interferon-JAK1/2-STAT1 signaling system and NF-κB as the main drivers of their expression. Ruxolitinib, a JAK1/2 inhibitor, normalized interferon signature genes and all complement gene transcripts induced by SARS-CoV-2 in lung epithelial cell lines, but did not affect NF-κB-regulated genes. Ruxolitinib, alone or in combination with the antiviral remdesivir, inhibited C3a protein produced by infected cells. Together, we postulate that combination therapy with JAK inhibitors and drugs that normalize NF-κB-signaling could potentially have clinical application for severe COVID-19.


Assuntos
COVID-19/metabolismo , Ativação do Complemento , Células Epiteliais/metabolismo , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo , Pulmão/metabolismo , Sistema de Sinalização das MAP Quinases , SARS-CoV-2/metabolismo , COVID-19/patologia , Linhagem Celular Tumoral , Complemento C3a/metabolismo , Fator B do Complemento/metabolismo , Células Epiteliais/patologia , Humanos , Pulmão/patologia
3.
Br J Pharmacol ; 178(14): 2771-2785, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32840864

RESUMO

The complement system, well known for its central role in innate immunity, is currently emerging as an unexpected, cell-autonomous, orchestrator of normal cell physiology. Specifically, an intracellularly active complement system-the complosome-controls key pathways of normal cell metabolism during immune cell homeostasis and effector function. So far, we know little about the exact structure and localization of intracellular complement components within and among cells. A common scheme, however, is that they operate in crosstalk with other intracellular immune sensors, such as inflammasomes, and that they impact on the activity of key subcellular compartments. Among cell compartments, mitochondria appear to have built a particularly early and strong relationship with the complosome and extracellularly active complement-not surprising in view of the strong impact of the complosome on metabolism. In this review, we will hence summarize the current knowledge about the close complosome-mitochondria relationship and also discuss key questions surrounding this novel research area. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.


Assuntos
Proteínas do Sistema Complemento , Imunidade Inata , Homeostase , Humanos , Fatores Imunológicos , Mitocôndrias
4.
EBioMedicine ; 60: 102985, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32927275

RESUMO

BACKGROUND: During atherogenesis, cholesterol precipitates into cholesterol crystals (CC) in the vessel wall, which trigger plaque inflammation by activating the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome. We investigated the relationship between CC, complement and NLRP3 in patients with cardiovascular disease. METHODS: We analysed plasma, peripheral blood mononuclear cells (PBMC) and carotid plaques from patients with advanced atherosclerosis applying ELISAs, multiplex cytokine assay, qPCR, immunohistochemistry, and gene profiling. FINDINGS: Transcripts of interleukin (IL)-1beta(ß) and NLRP3 were increased and correlated in PBMC from patients with acute coronary syndrome (ACS). Priming of these cells with complement factor 5a (C5a) and tumour necrosis factor (TNF) before incubation with CC resulted in increased IL-1ß protein when compared to healthy controls. As opposed to healthy controls, systemic complement was significantly increased in patients with stable angina pectoris or ACS. In carotid plaques, complement C1q and C5b-9 complex accumulated around CC-clefts, and complement receptors C5aR1, C5aR2 and C3aR1 were higher in carotid plaques compared to control arteries. Priming human carotid plaques with C5a followed by CC incubation resulted in pronounced release of IL-1ß, IL-18 and IL-1α. Additionally, mRNA profiling demonstrated that C5a and TNF priming followed by CC incubation upregulated plaque expression of NLRP3 inflammasome components. INTERPRETATION: We demonstrate that CC are important local- and systemic complement activators, and we reveal that the interaction between CC and complement could exert its effect by activating the NLRP3 inflammasome, thus promoting the progression of atherosclerosis.


Assuntos
Doenças das Artérias Carótidas/etiologia , Doenças das Artérias Carótidas/metabolismo , Colesterol/metabolismo , Proteínas do Sistema Complemento/imunologia , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Doenças das Artérias Carótidas/patologia , Complemento C5a/imunologia , Biologia Computacional/métodos , Doença da Artéria Coronariana/patologia , Citocinas/metabolismo , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Humanos , Inflamassomos/metabolismo , Mediadores da Inflamação/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Cristais Líquidos , Placa Aterosclerótica
5.
Nat Commun ; 9(1): 4186, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305631

RESUMO

The induction of human CD4+ Th1 cells requires autocrine stimulation of the complement receptor CD46 in direct crosstalk with a CD4+ T cell-intrinsic NLRP3 inflammasome. However, it is unclear whether human cytotoxic CD8+ T cell (CTL) responses also rely on an intrinsic complement-inflammasome axis. Here we show, using CTLs from patients with CD46 deficiency or with constitutively-active NLRP3, that CD46 delivers co-stimulatory signals for optimal CTL activity by augmenting nutrient-influx and fatty acid synthesis. Surprisingly, although CTLs express NLRP3, a canonical NLRP3 inflammasome is not required for normal human CTL activity, as CTLs from patients with hyperactive NLRP3 activity function normally. These findings establish autocrine complement and CD46 activity as integral components of normal human CTL biology, and, since CD46 is only present in humans, emphasize the divergent roles of innate immune sensors between mice and men.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Ácidos Graxos/metabolismo , Proteína Cofatora de Membrana/metabolismo , Receptores de Complemento/metabolismo , Comunicação Autócrina , Linfócitos T CD4-Positivos/imunologia , Síndromes Periódicas Associadas à Criopirina/imunologia , Síndromes Periódicas Associadas à Criopirina/patologia , Humanos , Ativação Linfocitária/imunologia , Modelos Biológicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T Citotóxicos/imunologia
6.
J Immunol ; 199(8): 2910-2920, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28855312

RESUMO

Cholesterol crystals (CC) are abundant in atherosclerotic plaques and promote inflammatory responses via the complement system and inflammasome activation. Cyclic oligosaccharide 2-hydroxypropyl-ß-cyclodextrin (BCD) is a compound that solubilizes lipophilic substances. Recently we have shown that BCD has an anti-inflammatory effect on CC via suppression of the inflammasome and liver X receptor activation. The putative effects of BCD on CC-induced complement activation remain unknown. In this study, we found that BCD bound to CC and reduced deposition of Igs, pattern recognition molecules, and complement factors on CC in human plasma. Furthermore, BCD decreased complement activation as measured by terminal complement complex and lowered the expression of complement receptors on monocytes in whole blood in response to CC exposure. In line with this, BCD also reduced reactive oxygen species formation caused by CC in whole blood. Furthermore, BCD attenuated the CC-induced proinflammatory cytokine responses (e.g., IL-1α, MIP-1α, TNF, IL-6, and IL-8) as well as regulated a range of CC-induced genes in human PBMC. BCD also regulated complement-related genes in human carotid plaques treated ex vivo. Formation of terminal complement complex on other complement-activating structures such as monosodium urate crystals and zymosan was not affected by BCD. These data demonstrate that BCD inhibits CC-induced inflammatory responses, which may be explained by BCD-mediated attenuation of complement activation. Thus, these findings support the potential for using BCD in treatment of atherosclerosis.


Assuntos
Artérias Carótidas/fisiologia , Colesterol/metabolismo , Ciclodextrinas/metabolismo , Inflamação/imunologia , Leucócitos Mononucleares/fisiologia , Monócitos/fisiologia , Placa Aterosclerótica/imunologia , Células Cultivadas , Colesterol/imunologia , Ativação do Complemento , Proteínas do Sistema Complemento/biossíntese , Ciclodextrinas/química , Citocinas/metabolismo , Humanos , Imunomodulação , Inflamação/induzido quimicamente , Mediadores da Inflamação/metabolismo , Placa Aterosclerótica/terapia , Espécies Reativas de Oxigênio/metabolismo
7.
Mol Immunol ; 84: 43-50, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27692470

RESUMO

In the host a diverse collection of endogenous danger signals is constantly generated consisting of waste material as protein aggregates or crystalline materials that are recognized and handled by soluble pattern recognition receptors and phagocytic cells of the innate immune system. These signals may under certain circumstances drive processes leading to adverse inflammation. One example is cholesterol crystals (CC) that accumulate in the vessel wall during early phases of atherogenesis and represent an important endogenous danger signal promoting inflammation. CC is recognized by the lectin- and classical pathways of the complement system resulting in activation of C3 and C5 with release of inflammatory mediators like the potent C5a fragment. Complement activation by CC leads to crosstalk with the NLRP3 inflammasome-caspase-1 pathway and production of IL-1ß. Neutralization of IL-1ß may have beneficial effects on atherosclerosis and a large clinical trial with an IL-1ß inhibitor is currently in progress (the CANTOS study). However, upstream inhibition of CC-induced inflammation by using a complement inhibitor may be more efficient in treating atherosclerosis since this will block initiation of inflammation processes before downstream release of cytokines including IL-1ß. Another therapeutic candidate can be broad-acting 2-hydroxypropyl-ß-cyclodextrin, a compound that targets several mechanisms such as cholesterol efflux, complement gene expression, and the NLRP3 pathway. In summary, emerging evidence show that complement is a key upstream player in the pathophysiology of atherosclerosis and that therapy aiming at inhibiting complement could be effective in controlling atherosclerosis.


Assuntos
Aterosclerose/imunologia , Estenose das Carótidas/imunologia , Colesterol/efeitos adversos , Colesterol/imunologia , Ativação do Complemento/imunologia , Animais , Citocinas/biossíntese , Humanos , Inflamação/imunologia
8.
J Immunol ; 196(12): 5064-74, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27183610

RESUMO

Cholesterol crystals (CC) play an essential role in the formation of atherosclerotic plaques. CC activate the classical and the alternative complement pathways, but the role of the lectin pathway is unknown. We hypothesized that the pattern recognition molecules (PRMs) from the lectin pathway bind CC and function as an upstream innate inflammatory signal in the pathophysiology of atherosclerosis. We investigated the binding of the PRMs mannose-binding lectin (MBL), ficolin-1, ficolin-2, and ficolin-3, the associated serine proteases, and complement activation products to CC in vitro using recombinant proteins, specific inhibitors, as well as deficient and normal sera. Additionally, we examined the deposition of ficolin-2 and MBL in human carotid plaques by immunohistochemistry and fluorescence microscopy. The results showed that the lectin pathway was activated on CC by binding of ficolin-2 and MBL in vitro, resulting in activation and deposition of complement activation products. MBL bound to CC in a calcium-dependent manner whereas ficolin-2 binding was calcium-independent. No binding was observed for ficolin-1 or ficolin-3. MBL and ficolin-2 were present in human carotid plaques, and binding of MBL to CC was confirmed in vivo by immunohistochemistry, showing localization of MBL around CC clefts. Moreover, we demonstrated that IgM, but not IgG, bound to CC in vitro and that C1q binding was facilitated by IgM. In conclusion, our study demonstrates that PRMs from the lectin pathway recognize CC and provides evidence for an important role for this pathway in the inflammatory response induced by CC in the pathophysiology of atherosclerosis.


Assuntos
Aterosclerose/imunologia , Aterosclerose/fisiopatologia , Ativação do Complemento , Progressão da Doença , Lectinas/metabolismo , Lectina de Ligação a Manose/metabolismo , Cálcio/metabolismo , Estenose das Carótidas/imunologia , Colesterol/química , Colesterol/imunologia , Colesterol/metabolismo , Colesterol/farmacologia , Complemento C4/metabolismo , Cristalização , Imunofluorescência , Glicoproteínas/imunologia , Glicoproteínas/metabolismo , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Imunoglobulina M/imunologia , Imunoglobulina M/metabolismo , Inflamação , Lectinas/imunologia , Lectina de Ligação a Manose/imunologia , Microscopia de Fluorescência , Receptores de Reconhecimento de Padrão/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Proteínas Recombinantes/metabolismo , Ficolinas
9.
J Immunol ; 195(1): 257-64, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26026058

RESUMO

Chronic inflammation of the arterial wall is a key element in the development of atherosclerosis, and cholesterol crystals (CC) that accumulate in plaques are associated with initiation and progression of the disease. We recently revealed a link between the complement system and CC-induced inflammasome caspase-1 activation, showing that the complement system is a key trigger in CC-induced inflammation. HDL exhibits cardioprotective and anti-inflammatory properties thought to explain its inverse correlation to cardiovascular risk. In this study, we sought to determine the effect of reconstituted HDL (rHDL) on CC-induced inflammation in a human whole blood model. rHDL bound to CC and inhibited the CC-induced complement activation as measured by soluble terminal C5b-9 formation and C3c deposition on the CC surface. rHDL attenuated the amount of CC-induced complement receptor 3 (CD11b/CD18) expression on monocytes and granulocytes, as well as reactive oxygen species generation. Moreover, addition of CC to whole blood resulted in release of proinflammatory cytokines that were inhibited by rHDL. Our results support and extend the notion that CC are potent triggers of inflammation, and that rHDL may have a beneficial role in controlling the CC-induced inflammatory responses by inhibiting complement deposition on the crystals.


Assuntos
Colesterol/efeitos adversos , Ativação do Complemento/efeitos dos fármacos , Lipoproteínas HDL/farmacologia , Células Sanguíneas/citologia , Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/imunologia , Antígeno CD11b/imunologia , Antígenos CD18/imunologia , Complemento C3c/antagonistas & inibidores , Complemento C3c/imunologia , Complexo de Ataque à Membrana do Sistema Complemento/antagonistas & inibidores , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Cristalização , Humanos , Inflamação/imunologia , Inflamação/patologia , Inflamação/prevenção & controle , Cultura Primária de Células , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/imunologia
10.
Immunobiology ; 219(10): 786-92, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25053140

RESUMO

Cholesterol crystals are known to be a hallmark of atherosclerosis with recent studies demonstrating deposition of these crystals in early fatty streak formation as well as penetrating the intima following plaque rupture. Inflammation has also become a central focus in atheroma development and endothelial cell activation is recognized as necessary for the recruitment of inflammatory cells to the plaque. However, the extent to which cholesterol crystals can induce inflammation and activate endothelial cells is not known. To investigate this, we developed a novel model activating human umbilical vein endothelial cells using lepirudin anticoagulated human whole blood. We found that cholesterol crystals caused a marked and dose-dependent increase in the adhesion molecules E-selectin and ICAM-1 on the surface of the endothelial cells after incubation with whole blood. There was no activation of the cells when the crystals were incubated in medium alone, or in human serum, despite substantial crystal-induced complement activation in serum. Complement inhibitors at the C3 and C5 levels reduced the whole blood induced endothelial cell activation by up to 89% (p<0.05) and abolished TNF release (p<0.01). Finally, the TNF inhibitor infliximab reduced endothelial activation to background levels (p<0.05). In conclusion, these data demonstrate that endothelial activation by cholesterol crystals is mediated by complement-dependent TNF release, and suggests that complement-inhibition might have a role in alleviating atherosclerosis-induced inflammation.


Assuntos
Colesterol/farmacologia , Complemento C3/metabolismo , Complemento C5/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Anticorpos Monoclonais Humanizados/farmacologia , Células Cultivadas , Complemento C3/antagonistas & inibidores , Complemento C5/antagonistas & inibidores , Cristalização , Citocinas/metabolismo , Selectina E/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Peptídeos Cíclicos/farmacologia
11.
J Immunol ; 192(6): 2837-45, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24554772

RESUMO

Inflammation is associated with development of atherosclerosis, and cholesterol crystals (CC) have long been recognized as a hallmark of atherosclerotic lesions. CC appear early in the atheroma development and trigger inflammation by NLRP3 inflammasome activation. In this study we hypothesized whether CC employ the complement system to activate inflammasome/caspase-1, leading to release of mature IL-1ß, and whether complement activation regulates CC-induced cytokine production. In this study we describe that CC activated both the classical and alternative complement pathways, and C1q was found to be crucial for the activation. CC employed C5a in the release of a number of cytokines in whole blood, including IL-1ß and TNF. CC induced minimal amounts of cytokines in C5-deficient whole blood, until reconstituted with C5. Furthermore, C5a and TNF in combination acted as a potent primer for CC-induced IL-1ß release by increasing IL-1ß transcripts. CC-induced complement activation resulted in upregulation of complement receptor 3 (CD11b/CD18), leading to phagocytosis of CC. Also, CC mounted a complement-dependent production of reactive oxygen species and active caspase-1. We conclude that CC employ the complement system to induce cytokines and activate the inflammasome/caspase-1 by regulating several cellular responses in human monocytes. In light of this, complement inhibition might be an interesting therapeutic approach for treatment of atherosclerosis.


Assuntos
Colesterol/farmacologia , Proteínas do Sistema Complemento/imunologia , Citocinas/imunologia , Inflamassomos/efeitos dos fármacos , Western Blotting , Caspase 1/imunologia , Caspase 1/metabolismo , Células Cultivadas , Colesterol/metabolismo , Ativação do Complemento/efeitos dos fármacos , Ativação do Complemento/imunologia , Complemento C1q/imunologia , Complemento C1q/metabolismo , Complemento C5/imunologia , Complemento C5/metabolismo , Complemento C5a/imunologia , Complemento C5a/metabolismo , Via Alternativa do Complemento/efeitos dos fármacos , Via Alternativa do Complemento/imunologia , Via Clássica do Complemento/efeitos dos fármacos , Via Clássica do Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Citocinas/metabolismo , Humanos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Antígeno de Macrófago 1/imunologia , Antígeno de Macrófago 1/metabolismo , Microscopia Confocal , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Fagocitose/imunologia , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...