Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39063747

RESUMO

This paper reviews the latest trends and applications of silicone in ophthalmology, especially related to intraocular lenses (IOLs). Silicone, or siloxane elastomer, as a synthetic polymer, has excellent biocompatibility, high chemical inertness, and hydrophobicity, enabling wide biomedical applications. The physicochemical properties of silicone are reviewed. A review of methods for mechanical and in vivo characterization of IOLs is presented as a prospective research area, since there are only a few available technologies, even though these properties are vital to ensure medical safety and suitability for clinical use, especially if long-term function is considered. IOLs represent permanent implants to replace the natural lens or for correcting vision, with the first commercial foldable lens made of silicone. Biological aspects of posterior capsular opacification have been reviewed, including the effects of the implanted silicone IOL. However, certain issues with silicone IOLs are still challenging and some conditions can prevent its application in all patients. The latest trends in nanotechnology solutions have been reviewed. Surface modifications of silicone IOLs are an efficient approach to further improve biocompatibility or to enable drug-eluting function. Different surface modifications, including coatings, can provide long-term treatments for various medical conditions or medical diagnoses through the incorporation of sensory functions. It is essential that IOL optical characteristics remain unchanged in case of drug incorporation and the application of nanoparticles can enable it. However, clinical trials related to these advanced technologies are still missing, thus preventing their clinical applications at this moment.

2.
Technol Health Care ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38875063

RESUMO

BACKGROUND: The biological properties of silicone elastomers such as polydimethylsiloxane (PDMS) have widespread use in biomedicine for soft tissue implants, contact lenses, soft robots, and many other small medical devices, due to its exceptional biocompatibility. Additive manufacturing of soft materials still has significant challenges even with major advancements that have occurred in development of these technologies for customized medical devices and tissue engineering. OBJECTIVE: The aim of this study was to develop a mathematical model of tangential stress in relation to shear stress, shear rate, 3D printing pressure and velocity, for non-Newtonian gels and fluids that are used as materials for 3D printing. METHOD: This study used FENE (finitely extensible nonlinear elastic model) model, for non-Newtonian gels and fluids to define the dependences between tangential stress, velocity, and pressure, considering viscosity, shear stress and shear rates as governing factors in soft materials friction and adhesion. Experimental samples were fabricated as showcases, by SLA and FDM 3D printing technologies: elastic polymer samples with properties resembling elastic properties of PDMS and thermoplastic polyurethane (TPU) samples. Experimental 3D printing parameters were used in the developed analytical solution to analyse the relationships between governing influential factors (tangential stress, printing pressure, printing speed, shear rate and friction coefficient). Maple software was used for numerical modelling. RESULTS: Analytical model applied on a printed elastic polymer, at low shear rates, exhibited numerical values of tangential stress of 0.208-0.216 N m - 2 at printing velocities of 0.9 to 1.2 mm s - 1, while the coefficient of friction was as low as 0.09-0.16. These values were in accordance with experimental data in literature. Printing pressure did not significantly influence tangential stress, whereas it was slightly influenced by shear rate changes. Friction coefficient linearly increased with tangential stress. CONCLUSION: Simple analytical model of friction for elastic polymer in SLA 3D printing showed good correspondence with experimental literature data for low shear rates, thus indicating possibility to use it for prediction of printing parameters towards desired dimensional accuracy of printed objects. Further development of this analytical model should enable other shear rate regimes, as well as additional soft materials and printing parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA