Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(11): e31461, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38832278

RESUMO

Oxide-free surfaces of polycrystalline Cu are prepared using acetic acid etching after chemical-mechanical polishing. UV ozone treatment is shown to increase the work function of the cleaned Cu by up to 0.5 eV. There is also a large reduction in quantum efficiency at 265 nm. Cu sheet can be easily masked from ozone exposure by Si or glass, meaning that selected-area oxi-dation is possible. Oxygen plasma treatment has a similar effect to the UV ozone but is more difficult to mask. There is no increase in surface roughness after oxidation, meaning that the larger work function could significantly re-duce dark current in accelerator photocathodes without affecting the desired photoemission region.

2.
Rev Sci Instrum ; 93(11): 113314, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461497

RESUMO

The minimum achievable particle beam emittance in an electron accelerator depends strongly on the intrinsic emittance of the photocathode electron source. This is measurable as the mean longitudinal and transverse energy spreads in the photoemitted electron beam (MLE and MTE respectively); consequently, MLE and MTE are notable figures of merit for photocathodes used as electron sources in particle accelerators. The overall energy spread is defined by the sum of the MTE and the MLE, and the minimization of MTE is crucial to reduce emittance and thus generate a high-brightness electron beam. Reducing the electron beam emittance in an accelerator that drives a Free-Electron Laser (FEL) delivers a significant reduction in the saturation length for an x-ray FEL, thus reducing the machine's construction footprint and operating costs while increasing the x-ray beam brightness. The ability to measure the transverse energy distribution curve of photoelectrons emitted from a photocathode is a key enabler in photocathode research and development that has prompted the Accelerator Science and Technology Centre (ASTeC) at the STFC Daresbury Laboratory to develop the Transverse Energy Spread Spectrometer to make these crucial measurements. We present details of the design for the upgraded TESS instrument with measured data for copper (100), (110), and (111) single-crystal photocathodes illuminated at UV wavelengths around 266 nm.

3.
Rev Sci Instrum ; 89(8): 083305, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30184709

RESUMO

The Transverse Energy Spread Spectrometer (TESS) was designed primarily to study the mean transverse energy spread of electrons emitted from photocathode electron sources at both room and liquid nitrogen temperatures as a function of quantum efficiency through analysis of the photoemission footprint. By reconfiguring the potentials applied to different detector elements, TESS can also be used to measure the mean longitudinal energy spread of photoemitted electrons. Initial plans were to use electrostatic wire meshes as a retarding element which prevents the detection of electrons with insufficient energy to overcome a variable potential barrier. However, this method has proved impractical and a new method has been proposed in which the photocathode bias potential is swept (effectively from a state of no electron emission to full emission) and the emitted photocurrent is then detected by using a photoemitted charge collector. In this article, we present the TESS set-up and analyze this new method to measure the longitudinal energy distribution curve. Experimental results are presented and compared to simulated results by utilising a custom designed tracking code.

4.
Phys Rev Lett ; 107(1): 016105, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21797556

RESUMO

Complementary but independent medium-energy and low-energy ion scattering studies of the (0001) surfaces of V(2)O(3) films grown on Pd(111), Au(111) and Cu(3)Au(100) reveal a reconstructed full O(3)-layer termination creating a VO(2) surface trilayer. This structure is fully consistent with previous calculations based on thermodynamic equilibrium at the surface during growth, but contrasts with previous suggestions that the surface termination comprises a complete monolayer of vanadyl (V=O) species.

5.
Phys Rev Lett ; 102(9): 096103, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19392537

RESUMO

The energy spectrum associated with scattering of 100 keV H+ ions from the outermost few atomic layers of Cu(111) in different scattering geometries provides direct evidence of trajectory-dependent electronic energy loss. Theoretical simulations, combining standard Monte Carlo calculations of the elastic scattering trajectories with coupled-channel calculations to describe inner-shell ionization and excitation as a function of impact parameter, reproduce the effects well and provide a means for far more complete analysis of medium-energy ion scattering data.

6.
J Phys Chem B ; 110(42): 21152-60, 2006 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17048939

RESUMO

The growth and annealing behavior of ultrathin Au films on Pd{111} were monitored with scanning tunneling microscopy (STM) and medium energy ion scattering (MEIS). The adsorption of acetic acid on both clean and deliberately carbon-contaminated bimetallic surfaces was investigated with reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD). We report that the surface chemistry of acetic acid is strongly modified by the presence of Au in the bimetallic surface which acts both to stabilize adsorbed acetate and to decrease the tendency of acetic acid to decompose on adsorption to produce adsorbed carbon. The adsorption of acetic acid at 300 K is found to cause measurable segregation of Pd to the surface for all surface compositions tested.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...