Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 30(47): 475703, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30387443

RESUMO

Angle resolved photoemission spectroscopy (ARPES) mesurements in cuprates have given key information on the temperature and angle dependence of the gap (d-wave order parameter, Fermi arcs and pseudogap). We show that these features can be understood in terms of a Bose condensation of interacting pairons (preformed hole pairs which form in their local antiferromagnetic environment). Starting from the basic properties of the pairon wavefunction, we derive the corresponding k-space spectral function. The latter explains the variation of the ARPES spectra as a function of temperature and angle up to T *, the onset temperature of pairon formation. While Bose excitations dominate at the antinode, the fermion excitations dominate around the nodal direction, giving rise to the Fermi arcs at finite temperature. This dual role is the key feature distinguishing cuprate from conventional superconductivity.

2.
J Phys Condens Matter ; 29(44): 445601, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-28837054

RESUMO

Understanding the physical properties of a large variety of high-T c superconductors (SC), the cuprate family as well as the more recent iron-based superconductors, is still a major challenge. In particular, these materials exhibit the 'peak-dip-hump' structure in the quasiparticle density of states (DOS). The origin of this structure is explained within our pair-pair interaction (PPI) model: The non-superconducting state consists of incoherent pairs, a 'Cooper-pair glass' which, due to the PPI, undergoes a Bose-like condensation below T c to the coherent SC state. We derive the equations of motion for the quasiparticle operators showing that the DOS 'peak-dip-hump' is caused by the coupling between quasiparticles and excited pair states, or 'super-quasiparticles'. The renormalized SC gap function becomes energy-dependent and non retarded, reproducing accurately the experimental spectra of both pnictides and cuprates, despite the large difference in gap value.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(4 Pt 2): 046105, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15903724

RESUMO

The influence of local order on the disordering scenario of small Wigner islands is discussed. A first disordering step is put in evidence by the time correlation functions and is linked to individual excitations resulting in configuration transitions, which are very sensitive to the local symmetries. This is followed by two other transitions, corresponding to orthoradial and radial diffusion, for which both individual and collective excitations play a significant role. Finally, we show that, contrary to large systems, the focus that is commonly made on collective excitations for such small systems through the Lindemann criterion has to be made carefully in order to clearly identify the relative contributions in the whole disordering process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...