Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 112(2): 416-434, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36462709

RESUMO

Therapeutics at or close to the nanoscale, such as liposomal irinotecan, offer significant promise for the treatment of solid tumors. Their potential advantage over the unencapsulated or free form of the drug is due in part to their altered biodistribution. For slow and sustained release, significant optimization of formulation is needed to achieve the required level of stability and allow long-term storage of the drug product. Gradient-based liposomal formulation of camptothecins such as irinotecan poses unique challenges owing to the camptothecin- and acid-catalyzed hydrolysis of phospholipid esters in the inner monolayer of the liposomal membrane. We demonstrated that a narrow set of conditions related to the external pH, temperature, intraliposomal concentration, identity of the drug-trapping agent, physical form of the drug inside the liposomes, and final drug load have a marked impact on the stability of the liposome phospholipid membrane. The physical form of the drug inside the liposome was shown to be an insoluble gel with an irinotecan-to-sulfate ratio approximating 1:1, reducing the potential for irinotecan-catalyzed phospholipid hydrolysis in the internal phospholipid monolayer. As a result of this work, a stable and active liposome formulation has been developed that maintains phospholipid chemical stability following long-term storage at 2-8°C.


Assuntos
Lipossomos , Fosfolipídeos , Irinotecano , Estabilidade de Medicamentos , Distribuição Tecidual , Camptotecina , Catálise
2.
J Control Release ; 310: 47-57, 2019 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-31400383

RESUMO

Ephrin A2 targeted immunoliposomes incorporating pH-sensitive taxane prodrugs were developed for sustained delivery of active drug to solid tumors. Here we describe the systematic formulation development and characterization of these immunoliposomes. We synthesized both paclitaxel and docetaxel prodrugs to formulate as ephrin A2-targeted liposomes stabilized in the aqueous core with sucroseoctasulfate (SOS). The optimized lipid formulation was comprised of egg-sphingomyelin, cholesterol, and polyethylene glycol distearoyl glycerol (PEG-DSG). The formulations examined had a high efficiency of prodrug encapsulation (as high as 114 mol% taxane per mole phospholipid) and subsequent stability (>3 years at 2-8 °C). The taxane prodrug was stabilized with extraliposomal citric acid and subsequently loaded into liposomes containing a gradient of SOS, resulting in highly stable SOS-drug complexes being formed inside the liposome. The internal prodrug and SOS concentrations were optimized for their impact on in vivo drug release and drug degradation. Cryo-electron microscope images revealed dense prodrug-SOS complex in the aqueous core of the immunoliposomes. Ephrin A2-targeted taxane liposomes exhibited sub-nanomolar (0.69 nM) apparent equilibrium dissociation constant toward the extracellular domain of the ephrin A2 receptor, long circulation half-life (8-12 h) in mouse plasma, a release rate dependent on intraliposomal drug concentration and stable long-term storage. At an equitoxic dose of 50 mg taxane/kg, ephrin A2-targeted liposomal prodrug showed greater antitumor activity than 10 mg/kg of docetaxel in A549 non-small cell lung, as well as MDA-MB-436 and SUM149 triple negative breast cancer xenograft models. The lead molecule entered a Phase I clinical trial in patients with solid tumors (NCT03076372).


Assuntos
Antineoplásicos/administração & dosagem , Hidrocarbonetos Aromáticos com Pontes/administração & dosagem , Portadores de Fármacos/química , Efrina-A2/metabolismo , Nanopartículas/química , Pró-Fármacos/administração & dosagem , Taxoides/administração & dosagem , Células A549 , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Hidrocarbonetos Aromáticos com Pontes/química , Hidrocarbonetos Aromáticos com Pontes/farmacocinética , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Linhagem Celular Tumoral , Composição de Medicamentos , Liberação Controlada de Fármacos , Feminino , Humanos , Lipossomos , Camundongos Nus , Tamanho da Partícula , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Ligação Proteica , Taxoides/química , Taxoides/farmacocinética , Taxoides/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Nat Biomed Eng ; 3(4): 264-280, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30952988

RESUMO

Antibody-mediated tumour targeting and nanoparticle-mediated encapsulation can reduce the toxicity of antitumour drugs and improve their efficacy. Here, we describe the performance of a nanotherapeutic encapsulating a hydrolytically sensitive docetaxel prodrug and conjugated to an antibody specific for EphA2-a receptor overexpressed in many tumours. Administration of the nanotherapeutic in mice led to slow and sustained release of the prodrug, reduced exposure of active docetaxel in the circulation (compared with administration of the free drug) and maintenance of optimal exposure of the drug in tumour tissue. We also show that administration of the nanotherapeutic in rats and dogs resulted in minimal haematological toxicity, as well as the absence of neutropenia and improved overall tolerability in multiple rodent models. Targeting of the nanotherapeutic to EphA2 improved tumour penetration and resulted in markedly enhanced antitumour activity (compared with administration of free docetaxel and non-targeted nanotherapeutic controls) in multiple tumour-xenografted mice. This nanomedicine could become a potent and safe therapeutic alternative for cancer patients undergoing chemotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Nanopartículas/uso terapêutico , Receptor EphA2/metabolismo , Animais , Antineoplásicos/farmacologia , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Hidrocarbonetos Aromáticos com Pontes/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Docetaxel/sangue , Docetaxel/química , Docetaxel/farmacocinética , Docetaxel/uso terapêutico , Humanos , Lipossomos , Camundongos Endogâmicos NOD , Camundongos SCID , Taxoides/farmacologia , Taxoides/uso terapêutico , Distribuição Tecidual/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Eur J Pharm Biopharm ; 134: 107-116, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30481559

RESUMO

AmBisome® is a liposomal formulation of amphotericin B (Amp B), a complex parenteral antifungal product with no US FDA approved generic version available to date. For generic Amp B liposomal product development, examination of the drug release profile is important for product quality control and analytical comparability evaluation with the reference listed drug. Yet, there is no standardized in vitro drug release (IVR) assay currently available for Amp B liposomes. In this study, we describe the development of a USP-4 apparatus-based IVR assay capable of discriminating liposomal Amp B formulations based on the drug release profile. The goal of the IVR assay development was to identify release media compositions and assay temperatures capable of facilitating 70-100% of drug release from AmBisome® in 24 h without Amp B precipitation or disruption of liposome structure. We found that an addition of 5% w/v of γ-cyclodextrin to the release media of 5% sucrose, 10 mM HEPES, and 0.01% NaN3 (pH = 7.4) prevented Amp B precipitation and facilitated drug release. Increased IVR assay temperature led to increased drug release rate, and 55 °C was selected as the highest temperature that induced drug release close to our target without causing product precipitation. The developed IVR assay was used to discriminate between drug release rates from AmBisome® and micellar Amp B products like Fungizone® and Fungcosome. The IVR assay was also capable of discriminating between Amp B liposomes with the same composition as AmBisome® but prepared by either extrusion or homogenization processes, both of which resulted in measurable liposomal particle size heterogeneity and Amp B concentration differences. Finally, the USP-4 IVR assay was used to compare Amp B release profiles between AmBisome® and two generic products approved in India, Amphonex® (Bharat Serums and Vaccines Ltd.) (f2 = 66.3) and Phosome® (Cipla Ltd.) (f2 = 55.4). Taken together, the developed USP-4 IVR assay can be a useful tool for drug release profile characterization in generic liposomal Amp B formulation development.


Assuntos
Anfotericina B/química , Antifúngicos/química , Química Farmacêutica/instrumentação , Desenvolvimento de Medicamentos/instrumentação , Liberação Controlada de Fármacos , Química Farmacêutica/métodos , Desenvolvimento de Medicamentos/métodos , Tamanho da Partícula
5.
J Neurooncol ; 136(3): 475-484, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29170909

RESUMO

Despite the advances in imaging, surgery and radiotherapy, the majority of patients with brainstem gliomas die within 2 years after initial diagnosis. Factors that contribute to the dismal prognosis of these patients include the infiltrative nature and anatomic location in an eloquent area of the brain, which prevents total surgical resection and the presence of the blood-brain barrier (BBB), which reduces the distribution of systemically administered agents. The development of new therapeutic approaches which can circumvent the BBB is a potential path to improve outcomes for these children. Convection-enhanced delivery (CED) and intranasal delivery (IND) are strategies that permit direct drug delivery into the central nervous system and are an alternative to intravenous injection (IV). We treated rats bearing human brainstem tumor xenografts with nanoliposomal irinotecan (CPT-11) using CED, IND, and IV. A single treatment of CED irinotecan had a similar effect on overall survival as multiple treatments by IV route. IND CPT-11 showed significantly increased survival of animals with brainstem tumors, and demonstrated the promise of this non-invasive approach of drug delivery bypassing the BBB when combined with nanoliposomal chemotherapy. Our results indicated that using CED and IND of nanoliposomal therapy increase likelihood of practical therapeutic approach for the treatment of brainstem gliomas.


Assuntos
Neoplasias do Tronco Encefálico/tratamento farmacológico , Irinotecano/administração & dosagem , Inibidores da Topoisomerase I/administração & dosagem , Administração Intranasal , Animais , Neoplasias do Tronco Encefálico/mortalidade , Linhagem Celular Tumoral , Convecção , Portadores de Fármacos , Humanos , Irinotecano/farmacocinética , Lipossomos , Masculino , Nanoestruturas , Ratos , Inibidores da Topoisomerase I/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Nanomedicine (Lond) ; 9(14): 2099-108, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24494810

RESUMO

AIM: We sought to evaluate nanoliposomal irinotecan as an intravenous treatment in an orthotopic brain tumor model. MATERIALS & METHODS: Nanoliposomal irinotecan was administered intravenously in the intracranial U87MG brain tumor model in mice, and irinotecan and SN-38 levels were analyzed in malignant and normal tissues. Therapy studies were performed in comparison to free irinotecan and control treatments. RESULTS: Tissue analysis demonstrated favorable properties for nanoliposomal irinotecan, including a 10.9-fold increase in tumor AUC for drug compared with free irinotecan and 35-fold selectivity for tumor versus normal tissue exposure. As a therapy for orthotopic brain tumors, nanoliposomal irinotecan showed a mean survival time of 54.2 versus 29.5 days for free irinotecan. A total of 33% of the animals receiving nanoliposomal irinotecan showed no residual tumor by study end compared with no survivors in the other groups. CONCLUSION: Nanoliposomal irinotecan administered systemically provides significant pharmacologic advantages and may be an efficacious therapy for brain tumors.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Camptotecina/análogos & derivados , Lipossomos , Nanoestruturas , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacocinética , Neoplasias Encefálicas/metabolismo , Camptotecina/administração & dosagem , Camptotecina/farmacocinética , Camptotecina/uso terapêutico , Irinotecano , Ratos
7.
Nanomedicine (Lond) ; 8(12): 1913-25, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23631502

RESUMO

AIM: The aim of this work is to evaluate combining targeting strategy and convection-enhanced delivery in brain tumor models by imaging quantum dot-immunoliposome hybrid nanoparticles. MATERIALS & METHODS: An EGF receptor-targeted, quantum dot-immunoliposome hybrid nanoparticle (QD-IL) was synthesized. In vitro uptake was measured by flow cytometry and intracellular localization was imaged by confocal microscopy. In the in vivo study, QD-ILs were delivered to intracranial xenografts via convection-enhanced delivery and fluorescence was monitored noninvasively in real-time. RESULTS: QD-ILs exhibited specific and efficient uptake in vitro and exhibited approximately 1.3- to 5.0-fold higher total fluorescence compared with nontargeted counterpart in intracranial brain tumor xenografts in vivo. CONCLUSION: QD-ILs serve as an effective imaging agent in vitro and in vivo, and the data suggest that ligand-directed liposomal nanoparticles in conjunction with convection-enhanced delivery may offer therapeutic benefits for glioblastoma treatment as a result of specific and efficient uptake by malignant cells.


Assuntos
Neoplasias Encefálicas/metabolismo , Encéfalo/patologia , Sistemas de Liberação de Medicamentos , Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Lipossomos/metabolismo , Pontos Quânticos/metabolismo , Animais , Encéfalo/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Convecção , Feminino , Glioblastoma/patologia , Humanos , Lipossomos/análise , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pontos Quânticos/análise
8.
Toxicol Appl Pharmacol ; 262(1): 1-10, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22676972

RESUMO

Anthracycline-based regimens are a mainstay of early breast cancer therapy, however their use is limited by cardiac toxicity. The potential for cardiotoxicity is a major consideration in the design and development of combinatorial therapies incorporating anthracyclines and agents that target the HER2-mediated signaling pathway, such as trastuzumab. In this regard, HER2-targeted liposomal doxorubicin was developed to provide clinical benefit by both reducing the cardiotoxicity observed with anthracyclines and enhancing the therapeutic potential of HER2-based therapies that are currently available for HER2-overexpressing cancers. While documenting the enhanced therapeutic potential of HER2-targeted liposomal doxorubicin can be done with existing models, there has been no validated human cardiac cell-based assay system to rigorously assess the cardiotoxicity of anthracyclines. To understand if HER2-targeting of liposomal doxorubicin is possible with a favorable cardiac safety profile, we applied a human stem cell-derived cardiomyocyte platform to evaluate the doxorubicin exposure of human cardiac cells to HER2-targeted liposomal doxorubicin. To the best of our knowledge, this is the first known application of a stem cell-derived system for evaluating preclinical cardiotoxicity of an investigational agent. We demonstrate that HER2-targeted liposomal doxorubicin has little or no uptake into human cardiomyocytes, does not inhibit HER2-mediated signaling, results in little or no evidence of cardiomyocyte cell death or dysfunction, and retains the low penetration into heart tissue of liposomal doxorubicin. Taken together, this data ultimately led to the clinical decision to advance this drug to Phase I clinical testing, which is now ongoing as a single agent in HER2-expressing cancers.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Miócitos Cardíacos/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/toxicidade , Neoplasias da Mama/patologia , Doxorrubicina/administração & dosagem , Doxorrubicina/toxicidade , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Nus , Miócitos Cardíacos/metabolismo , Receptor ErbB-2/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Methods Enzymol ; 502: 139-66, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22208985

RESUMO

Immunoliposomes provide a complementary, and in many instances advantageous, drug delivery strategy to antibody-drug conjugates. Their high carrying capacity of 20,000-150,000 drug molecules/liposome, allows for the use of a significantly broader range of moderate-to-high potency small molecule drugs when compared to the comparably few subnanomolar potency maytansinoid- and auristatin-based immunoconjugates. The multivalent display of 5-100 antibody fragments/liposome results in an avidity effect that can make use of even moderate affinity antibodies, as well as a cross-linking of cell surface receptors to induce the internalization required for intracellular drug release and subsequent activity. The underlying liposomal drug must be effectively engineered for long circulating pharmacokinetics and stable in vivo drug retention in order to allow for the drug to be efficiently delivered to the target tissue and take advantage of the site-specific bioavailability provided for by the targeting arm. In this chapter, we describe the rationale for engineering stable immunoliposome-based therapeutics, methods required for preparation of immunoliposomes, as well as for their physicochemical and in vivo characterization.


Assuntos
Antineoplásicos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Imunoconjugados/metabolismo , Fragmentos de Imunoglobulinas/metabolismo , Lipossomos/metabolismo , Nanomedicina/métodos , Neoplasias/tratamento farmacológico , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacocinética , Afinidade de Anticorpos , Antineoplásicos/farmacocinética , Composição de Medicamentos/métodos , Estabilidade de Medicamentos , Humanos , Imunoconjugados/química , Imunoconjugados/farmacocinética , Fragmentos de Imunoglobulinas/química , Cinética , Lipídeos/química , Lipossomos/imunologia , Camundongos , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Tamanho da Partícula , Polietilenoglicóis/química , Engenharia de Proteínas/métodos , Ratos , Reagentes de Sulfidrila/química
10.
Neuro Oncol ; 13(12): 1288-95, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21954443

RESUMO

Achieving effective treatment outcomes for patients with glioblastoma (GBM) has been impeded by many obstacles, including the pharmacokinetic limitations of antitumor agents, such as topotecan (TPT). Here, we demonstrate that intravenous administration of a novel nanoliposomal formulation of TPT (nLS-TPT) extends the survival of mice with intracranial GBM xenografts, relative to administration of free TPT, because of improved biodistribution and pharmacokinetics of the liposome-formulated drug. In 3 distinct orthotopic GBM models, 3 weeks of biweekly intravenous therapy with nLS-TPT was sufficient to delay tumor growth and significantly extend animal survival, compared with treatment with free TPT (P ≤ .03 for each tumor tested). Analysis of intracranial tumors showed increased activation of cleaved caspase-3 and increased DNA fragmentation, both indicators of apoptotic response to treatment with nLS-TPT. These results demonstrate that intravenous delivery of nLS-TPT is a promising strategy in the treatment of GBM and support clinical investigation of this therapeutic approach.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Lipossomos , Nanotecnologia , Inibidores da Topoisomerase I/uso terapêutico , Topotecan/uso terapêutico , Animais , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Feminino , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Técnicas Imunoenzimáticas , Medições Luminescentes , Camundongos , Camundongos Nus , Taxa de Sobrevida , Distribuição Tecidual , Inibidores da Topoisomerase I/farmacocinética , Topotecan/farmacocinética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Neuro Oncol ; 12(9): 928-40, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20488958

RESUMO

Canine spontaneous intracranial tumors bear striking similarities to their human tumor counterparts and have the potential to provide a large animal model system for more realistic validation of novel therapies typically developed in small rodent models. We used spontaneously occurring canine gliomas to investigate the use of convection-enhanced delivery (CED) of liposomal nanoparticles, containing topoisomerase inhibitor CPT-11. To facilitate visualization of intratumoral infusions by real-time magnetic resonance imaging (MRI), we included identically formulated liposomes loaded with Gadoteridol. Real-time MRI defined distribution of infusate within both tumor and normal brain tissues. The most important limiting factor for volume of distribution within tumor tissue was the leakage of infusate into ventricular or subarachnoid spaces. Decreased tumor volume, tumor necrosis, and modulation of tumor phenotype correlated with volume of distribution of infusate (Vd), infusion location, and leakage as determined by real-time MRI and histopathology. This study demonstrates the potential for canine spontaneous gliomas as a model system for the validation and development of novel therapeutic strategies for human brain tumors. Data obtained from infusions monitored in real time in a large, spontaneous tumor may provide information, allowing more accurate prediction and optimization of infusion parameters. Variability in Vd between tumors strongly suggests that real-time imaging should be an essential component of CED therapeutic trials to allow minimization of inappropriate infusions and accurate assessment of clinical outcomes.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Camptotecina/análogos & derivados , Sistemas de Liberação de Medicamentos/métodos , Glioma/tratamento farmacológico , Nanopartículas , Animais , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/veterinária , Camptotecina/administração & dosagem , Convecção , Modelos Animais de Doenças , Cães , Glioma/patologia , Glioma/veterinária , Irinotecano , Lipossomos , Imageamento por Ressonância Magnética
12.
J Control Release ; 141(1): 13-21, 2010 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-19686789

RESUMO

Topotecan (TPT), a highly active anticancer camptothecin drug, would benefit from nanocarrier-mediated site-specific and intracellular delivery because of a labile lactone ring whose hydrolysis inactivates the drug, poor cellular uptake resulting from both lactone hydrolysis and a titratable phenol hydroxyl, and the schedule-dependency of its efficacy due to its mechanism of action. We have encapsulated topotecan in liposomes using transmembrane gradients of triethylammonium salts of polyphosphate (Pn) or sucroseoctasulfate (SOS). Circulation lifetimes were prolonged, and the rate of drug release in vivo depended on the drug load (T(1/2)=5.4 h vs. 11.2 h for 124 and 260 g TPT/mol PL, respectively) and the nature of intraliposomal drug complexing agent used to stabilize the nanoliposome formulation (T(1/2)=11.2 h vs. 27.3 h for Pn and SOS, respectively). Anti-EGFR and anti-HER2-immunoliposomal formulations dramatically increased uptake of topotecan compared to nontargeted nanoliposomal topotecan and poorly permeable free topotecan in receptor-overexpressing cancer cell lines, with a corresponding increase in cytotoxicity in multiple breast cancer cell lines and improved antitumor activity against HER2-overexpressing human breast cancer (BT474) xenografts. We conclude that stabilization of topotecan in nanoliposomes significantly improves the targetability and pharmacokinetic profile of topotecan, allowing for highly active formulations against solid tumors and immunotargeting to cancer-overexpressing cell surface receptors.


Assuntos
Antineoplásicos/química , Nanoestruturas/química , Topotecan/química , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Química Farmacêutica , Estabilidade de Medicamentos , Receptores ErbB/antagonistas & inibidores , Feminino , Humanos , Lipossomos , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Receptor ErbB-2/antagonistas & inibidores , Fatores de Tempo , Topotecan/administração & dosagem , Topotecan/farmacocinética , Topotecan/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cancer Chemother Pharmacol ; 64(4): 741-51, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19184019

RESUMO

PURPOSE: Liposome and immunoliposome formulations of two vinca alkaloids, vincristine and vinblastine, were prepared using intraliposomal triethylammonium sucroseoctasulfate and examined for their ability to stabilize the drug for targeted drug delivery in vivo. METHODS: The pharmacokinetics of both the encapsulated drug (vincristine or vinblastine) and liposomal carrier were examined in Sprague Dawley rats, and the in vivo drug release rates determined. Anti-HER2 immunoliposomal vincristine was prepared from a human anti-HER2/neu scFv and studied for targeted cytotoxic activity in cell culture, and antitumor efficacy in vivo. RESULTS: Nanoliposome formulations of vincristine and vinblastine demonstrated similar pharmacokinetic profiles for the liposomal carrier, but increased clearance for liposome encapsulated vinblastine (t (1/2) = 9.7 h) relative to vincristine (t (1/2) = 18.5 h). Immunoliposome formulations of vincristine targeted to HER2 using an anti-HER2 scFv antibody fragment displayed a marked enhancement in cytotoxicity when compared to non-targeted liposomal vincristine control; 63- or 253-fold for BT474 and SKBR3 breast cancer cells, respectively. Target-specific activity was also demonstrated in HER2-overexpressing human tumor xenografts, where the HER2-targeted formulation was significantly more efficacious than either free vincristine or non-targeted liposomal vincristine. CONCLUSIONS: These results demonstrate that active targeting of solid tumors with liposomal formulations of vincristine is possible when the resulting immunoliposomes are sufficiently stabilized.


Assuntos
Antineoplásicos/farmacologia , Lipossomos , Vimblastina/farmacologia , Vincristina/farmacologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Camundongos , Ratos , Ratos Sprague-Dawley , Transplante Heterólogo , Vimblastina/administração & dosagem , Vimblastina/farmacocinética , Vincristina/administração & dosagem , Vincristina/farmacocinética
14.
J Pharmacol Exp Ther ; 328(1): 321-30, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18948499

RESUMO

Effective liposomal formulations of vinorelbine (5' nor-anhydro-vinblastine; VRL) have been elusive due to vinorelbine's hydrophobic structure and resulting difficulty in stabilizing the drug inside the nanocarrier. Triethylammonium salts of several polyanionic trapping agents were used initially to prepare minimally pegylated nanoliposomal vinorelbine formulations with a wide range of drug release rates. Sulfate, poly(phosphate), and sucrose octasulfate were used to stabilize vinorelbine intraliposomally while in circulation, with varying degrees of effectiveness. The release rate of vinorelbine from the liposomal carrier was affected by both the chemical nature of the trapping agent and the resulting drug-to-lipid ratio, with liposomes prepared using sucrose octasulfate displaying the longest half-life in circulation (9.4 h) and in vivo retention in the nanoparticle (t(1/2) = 27.2 h). Efficacy was considerably improved in both a human colon carcinoma (HT-29) and a murine (C-26) colon carcinoma model when vinorelbine was stably encapsulated in liposomes using triethylammonium sucrose octasulfate. Early difficulties in preparing highly pegylated formulations were later overcome by substituting a neutral distearoylglycerol anchor for the more commonly used anionic distearoylphosphatidylethanolamine anchor. The new pegylated nanoliposomal vinorelbine displayed high encapsulation efficiency and in vivo drug retention, and it was highly active against human breast and lung tumor xenografts. Acute toxicity of the drug in immunocompetent mice slightly decreased upon encapsulation in liposomes, with a maximum tolerated dose of 17.5 mg VRL/kg for free vinorelbine and 23.8 mg VRL/kg for nanoliposomal vinorelbine. Our results demonstrate that a highly active, stable, and long-circulating liposomal vinorelbine can be prepared and warrants further study in the treatment of cancer.


Assuntos
Vimblastina/análogos & derivados , Portadores de Fármacos , Estabilidade de Medicamentos , Humanos , Lipossomos , Nanopartículas , Fosfolipídeos/sangue , Trítio , Vimblastina/química , Vimblastina/farmacocinética , Vinorelbina
15.
Nano Lett ; 8(9): 2851-7, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18712930

RESUMO

Targeted drug delivery systems that combine imaging and therapeutic modalities in a single macromolecular construct may offer advantages in the development and application of nanomedicines. To incorporate the unique optical properties of luminescent quantum dots (QDs) into immunoliposomes for cancer diagnosis and treatment, we describe the synthesis, biophysical characterization, tumor cell-selective internalization, and anticancer drug delivery of QD-conjugated immunoliposome-based nanoparticles (QD-ILs). Pharmacokinetic properties and in vivo imaging capability of QD-ILs were also investigated. Freeze-fracture electron microscopy was used to visualize naked QDs, liposome controls, nontargeted QD-conjugated liposomes (QD-Ls), and QD-ILs. QD-ILs prepared by insertion of anti-HER2 scFv exhibited efficient receptor-mediated endocytosis in HER2-overexpressing SK-BR-3 and MCF-7/HER2 cells but not in control MCF-7 cells as analyzed by flow cytometry and confocal microscopy. In contrast, nontargeted QD-Ls showed minimal binding and uptake in these cells. Doxorubicin-loaded QD-ILs showed efficient anticancer activity, while no cytotoxicity was observed for QD-ILs without chemotherapeutic payload. In athymic mice, QD-ILs significantly prolonged circulation of QDs, exhibiting a plasma terminal half-life ( t 1/2) of approximately 2.9 h as compared to free QDs with t 1/2 < 10 min. In MCF-7/HER2 xenograft models, localization of QD-ILs at tumor sites was confirmed by in vivo fluorescence imaging.


Assuntos
Lipossomos , Pontos Quânticos , Animais , Linhagem Celular Tumoral , Técnica de Fratura por Congelamento , Humanos , Camundongos , Microscopia Eletrônica
16.
J Neurosurg ; 108(5): 989-98, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18447717

RESUMO

OBJECT: Many factors relating to the safety and efficacy of convection-enhanced delivery (CED) into intracranial tumors are poorly understood. To investigate these factors further and establish a more clinically relevant large animal model, with the potential to investigate CED in large, spontaneous tumors, the authors developed a magnetic resonance (MR) imaging-compatible system for CED of liposomal nanoparticles into the canine brain, incorporating real-time MR imaging. Additionally any possible toxicity of liposomes containing Gd and the chemotherapeutic agent irinotecan (CPT-11) was assessed following direct intraparenchymal delivery. METHODS: Four healthy laboratory dogs were infused with liposomes containing Gd, rhodamine, or CPT-11. Convection-enhanced delivery was monitored in real time by sequential MR imaging, and the volumes of distribution were calculated from MR images and histological sections. Assessment of any toxicity was based on clinical and histopathological evaluation. Convection-enhanced delivery resulted in robust volumes of distribution in both gray and white matter, and real-time MR imaging allowed accurate calculation of volumes and pathways of distribution. RESULTS: Infusion variability was greatest in the gray matter, and was associated with leakage into ventricular or subarachnoid spaces. Complications were minimal and included mild transient proprioceptive deficits, focal hemorrhage in 1 dog, and focal, mild perivascular, nonsuppurative encephalitis in 1 dog. CONCLUSIONS: Convection-enhanced delivery of liposomal Gd/CPT-11 is associated with minimal adverse effects in a large animal model, and further assessment for use in clinical patients is warranted. Future studies investigating real-time monitored CED in spontaneous gliomas in canines are feasible and will provide a unique, clinically relevant large animal translational model for testing this and other therapeutic strategies.


Assuntos
Camptotecina/análogos & derivados , Imageamento por Ressonância Magnética , Animais , Encéfalo/metabolismo , Camptotecina/administração & dosagem , Camptotecina/farmacocinética , Camptotecina/toxicidade , Cães , Monitoramento Ambiental , Feminino , Fluorescência , Gadolínio , Irinotecano , Lipossomos , Nanopartículas
17.
J Pharm Sci ; 97(11): 4696-740, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18351638

RESUMO

Liposomes represent a widely varied and malleable class of drug carriers generally characterized by the presence of one or more amphiphile bilayers enclosing an interior aqueous space. Thus, the pharmacological profile of a particular liposomal drug formulation is a function not only of the properties of the encapsulated drug, but to a significant extent of the pharmacokinetics, biodistribution, and drug release rates of the individual carrier. Various physicochemical properties of the liposomal carriers, the drug encapsulation and retention strategies utilized, and the properties of the drugs chosen for encapsulation, all play an important role in determining the effectiveness of a particular liposomal drug. These properties should be carefully tailored to the specific drug, and to the application for which the therapeutic is being designed. Liposomal carriers are also amenable to additional modifications, including the conjugation of targeting ligands or environment-sensitive triggers for increasing the bioavailability of the drug specifically at the site of disease. This review describes the rationale for selecting optimal strategies of liposomal drug formulations with respect to drug encapsulation, retention, and release, and how these strategies can be applied to maximize therapeutic benefit in vivo.


Assuntos
Portadores de Fármacos , Lipossomos , Nanopartículas , Farmacocinética , Animais , Área Sob a Curva , Meia-Vida , Distribuição Tecidual
18.
Neuro Oncol ; 9(4): 393-403, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17652269

RESUMO

We have previously shown that convection-enhanced delivery (CED) of highly stable nanoparticle/liposome agents encapsulating chemotherapeutic drugs is effective against intracranial rodent brain tumor xenografts. In this study, we have evaluated the combination of a newly developed nanoparticle/liposome containing the topoisomerase I inhibitor CPT-11 (nanoliposomal CPT-11 [nLs-CPT-11]), and PEGylated liposomal doxorubicin (Doxil) containing the topoisomerase II inhibitor doxorubicin. Both drugs were detectable in the CNS for more than 36 days after a single CED application. Tissue half-life was 16.7 days for nLs-CPT-11 and 10.9 days for Doxil. The combination of the two agents produced synergistic cytotoxicity in vitro. In vivo in U251MG and U87MG intracranial rodent xenograft models, CED of the combination was also more efficacious than either agent used singly. Analysis of the parameters involved in this approach indicated that tissue pharmacokinetics, tumor microanatomy, and biochemical interactions of the drugs all contributed to the therapeutic efficacy observed. These findings have implications for further clinical applications of CED-based treatment of brain tumors.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Camptotecina/análogos & derivados , Doxorrubicina/administração & dosagem , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Camptotecina/administração & dosagem , Camptotecina/efeitos adversos , Camptotecina/farmacocinética , Linhagem Celular Tumoral , Convecção , Doxorrubicina/efeitos adversos , Doxorrubicina/farmacocinética , Sinergismo Farmacológico , Meia-Vida , Humanos , Irinotecano , Lipossomos , Masculino , Nanopartículas , Transplante de Neoplasias , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Neuro Oncol ; 9(1): 20-8, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17018695

RESUMO

Despite multimodal treatment options, the response and survival rates for patients with malignant gliomas remain dismal. Clinical trials with convection-enhanced delivery (CED) have recently opened a new window in neuro-oncology to the direct delivery of chemotherapeutics to the CNS, circumventing the blood-brain barrier and reducing systemic side effects. Our previous CED studies with liposomal chemotherapeutics have shown promising antitumor activity in rodent brain tumor models. In this study, we evaluated a combination of nanoliposomal topotecan (nLs-TPT) and pegylated liposomal doxorubicin (PLD) to enhance efficacy in our brain tumor models, and to establish a CED treatment capable of improving survival from malignant brain tumors. Both liposomal drugs decreased key enzymes involved in tumor cell replication in vitro. Synergistic effects of nLs-TPT and PLD on U87MG cell death were found. The combination displayed excellent efficacy in a CED-based survival study 10 days after tumor cell implantation. Animals in the control group and those in singleagent groups had a median survival of less than 30 days, whereas the combination group experienced a median survival of more than 90 days. We conclude that CED of two liposomal chemotherapeutics (nLs-TPT and PLD) may be an effective treatment option for malignant gliomas.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Doxorrubicina/análogos & derivados , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Polietilenoglicóis/administração & dosagem , Inibidores da Topoisomerase I , Inibidores da Topoisomerase II , Topotecan/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Glioblastoma/patologia , Humanos , Masculino , Ratos , Ratos Nus , Ratos Sprague-Dawley , Taxa de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Neuro Oncol ; 8(3): 205-14, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16723630

RESUMO

Treatment of malignant gliomas represents one of the most formidable challenges in oncology. The combination of surgery, radiation, and chemotherapy yields median survivals of less than one year. Here we demonstrate the use of a minimally invasive surgical technique, convection-enhanced delivery (CED), for local administration of a novel nanoparticle liposome containing topotecan. CED of this liposomal topotecan (Ls-TPT) resulted in extended brain tissue retention (t1/2 = 1.5 days), whereas free topotecan was rapidly cleared (t1/2 = 0.1 days) after CED. The favorable pharmacokinetic profile of extended topotecan release for about seven days, along with biodistribution featuring perivascular accumulation of the nanoparticles, provided, in addition to the known topoisomerase I inhibition, an effective antiangiogenic therapy. In the rat intracranial U87MG tumor model, vascular targeting of Ls-TPT with CED was associated with reductions in laminin expression and vascular density compared to free topotecan or control treatments. A single CED treatment on day 7 showed that free topotecan conferred no survival benefit versus control. However, Ls-TPT produced a significant (P = 0.0002) survival benefit, with six of seven complete cures. Larger U87MG tumors, where CED of Ls-TPT on day 12 resulted in one of six cures, indicated the necessity to cover the entire tumor with the infused therapeutic agent. CED of Ls-TPT was also efficacious in the intracranial U251MG tumor model (P = 0.0005 versus control). We conclude that the combination of a novel nanoparticle Ls-TPT and CED administration was very effective in treating experimental brain tumors.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Convecção , Sistemas de Liberação de Medicamentos/métodos , Glioma/tratamento farmacológico , Topotecan/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Glioma/patologia , Humanos , Lipossomos , Masculino , Ratos , Ratos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...