Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Diabet Med ; 40(12): e15192, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37531444

RESUMO

AIMS: Our aim was to determine if ultrasound-guided HPV injection in mice would provide reproducible and reliable results, as is currently obtained via open laparotomy techniques, and offer a surgical refinement to emulate islet transplantation in humans. METHODS: Fluorescent-polymer microparticles (20 µm) were injected (27G-needle) into the HPV via open laparotomy (n = 4) or under ultrasound-guidance (n = 4) using an MX550D-transducer with a Vevo3100-scanner (FUJIFILM VisualSonics, Inc.). Mice were culled 24-h post injection; organs were frozen, step sectioned (10 µm-slices) and 10 sections/mouse (50 µm-spacing) were quantified for microparticles in the liver and other organs by fluorescent microscopy. RESULTS: Murine HPV injection, via open laparotomy-route, resulted in widespread distribution of microparticles in the liver, lungs and spleen; ultrasound-guided injection resulted in reduced microparticle delivery (p < 0.0001) and microparticle clustering in distinct areas of the liver at the site of needle penetration, with very few/no microparticles being seen in lung and spleen tissues, hypothesised to be due to flow into the body cavity: liver median (interquartile range) 4.15 (0.00-4.15) versus 0.00 (0.00-0.00) particle-count mm-2 , respectively. CONCLUSIONS: Ultrasound-guided injection results in microparticle clustering in the liver, with an overall reduction in microparticle number when compared to open laparotomy HPV injection, and high variability in microparticle-counts detected between mice. Ultrasound-guided injection is not currently a technique that can replace open laparotomy HPV of islet transplantation in mice.


Assuntos
Infecções por Papillomavirus , Veia Porta , Humanos , Camundongos , Animais , Veia Porta/diagnóstico por imagem , Fígado , Ultrassonografia , Ultrassonografia de Intervenção
2.
Am J Transplant ; 21(9): 2950-2963, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33428803

RESUMO

Transplantation of islets in type 1 diabetes (T1D) is limited by poor islet engraftment into the liver, with two to three donor pancreases required per recipient. We aimed to condition the liver to enhance islet engraftment to improve long-term graft function. Diabetic mice received a non-curative islet transplant (n = 400 islets) via the hepatic portal vein (HPV) with fibroblast growth factor 7-loaded galactosylated poly(DL-lactide-co-glycolic acid) (FGF7-GAL-PLGA) particles; 26-µm diameter particles specifically targeted the liver, promoting hepatocyte proliferation in short-term experiments: in mice receiving 0.1-mg FGF7-GAL-PLGA particles (60-ng FGF7) vs vehicle, cell proliferation was induced specifically in the liver with greater efficacy and specificity than subcutaneous FGF7 (1.25 mg/kg ×2 doses; ~75-µg FGF7). Numbers of engrafted islets and vascularization were greater in liver sections of mice receiving islets and FGF7-GAL-PLGA particles vs mice receiving islets alone, 72 h posttransplant. More mice (six of eight) that received islets and FGF7-GAL-PLGA particles normalized blood glucose concentrations by 30-days posttransplant, versus zero of eight mice receiving islets alone with no evidence of increased proliferation of cells within the liver at this stage and normal liver function tests. This work shows that liver-targeted FGF7-GAL-PLGA particles achieve selective FGF7 delivery to the liver-promoting islet engraftment to help normalize blood glucose levels with a good safety profile.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Glicemia , Fator 7 de Crescimento de Fibroblastos , Sobrevivência de Enxerto , Camundongos
3.
Sci Transl Med ; 12(526)2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941825

RESUMO

Islet transplantation is an efficacious therapy for type 1 diabetes; however, islets from multiple donor pancreata are required, and a gradual attrition in transplant function is seen. Here, we manufactured human umbilical cord perivascular mesenchymal stromal cells (HUCPVCs) to Good Manufacturing Practice (GMP) standards. HUCPVCs showed a stable phenotype while undergoing rapid ex vivo expansion at passage 2 (p2) to passage 4 (p4) and produced proregenerative factors, strongly suppressing T cell responses in the resting state and in response to inflammation. Transplanting an islet equivalent (IEQ):HUCPVC ratio of 1:30 under the kidney capsule in diabetic NSG mice demonstrated the fastest return to normoglycemia by 3 days after transplant: Superior glycemic control was seen at both early (2.7 weeks) and later stages (7, 12, and 16 weeks) versus ratios of 1:0, 1:10, and 1:50, respectively. Syngeneic islet transplantation in immunocompetent mice using the clinically relevant hepatic portal route with a marginal islet mass showed that mice transplanted with an IEQ:HUCPVC ratio of 1:150 had superior glycemic control versus ratios of 1:0, 1:90, and 1:210 up to 6 weeks after transplant. Immunodeficient mice transplanted with human islets (IEQ:HUCPVC ratio of 1:150) exhibited better glycemic control for 7 weeks after transplant versus islet transplant alone, and islets transplanted via the hepatic portal vein in an allogeneic mouse model using a curative islet mass demonstrated delayed rejection of islets when cotransplanted with HUCPVCs (IEQ:HUCPVC ratio of 1:150). The immunosuppressive and proregenerative properties of HUCPVCs demonstrated long-term positive effects on graft function in vivo, indicating that they may improve long-term human islet allotransplantation outcomes.


Assuntos
Transplante das Ilhotas Pancreáticas/métodos , Cordão Umbilical/citologia , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/cirurgia , Humanos , Ilhotas Pancreáticas/metabolismo , Camundongos , Veia Porta/metabolismo
4.
Cytotherapy ; 19(4): 555-569, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28214127

RESUMO

BACKGROUND AIMS: Tracking cells during regenerative cytotherapy is crucial for monitoring their safety and efficacy. Macrophages are an emerging cell-based regenerative therapy for liver disease and can be readily labeled for medical imaging. A reliable, clinically applicable cell-tracking agent would be a powerful tool to study cell biodistribution. METHODS: Using a recently described chemical design, we set out to functionalize, optimize and characterize a new set of superparamagnetic iron oxide nanoparticles (SPIONs) to efficiently label macrophages for magnetic resonance imaging-based cell tracking in vivo. RESULTS: A series of cell health and iron uptake assays determined that positively charged SPIONs (+16.8 mV) could safely label macrophages more efficiently than the formerly approved ferumoxide (-6.7 mV; Endorem) and at least 10 times more efficiently than the clinically approved SPION ferumoxytol (-24.2 mV; Rienso). An optimal labeling time of 4 h at 25 µg/mL was demonstrated to label macrophages of mouse and human origin without any adverse effects on cell viability whilst providing substantial iron uptake (>5 pg Fe/cell) that was retained for 7 days in vitro. SPION labeling caused no significant reduction in phagocytic activity and a shift toward a reversible M1-like phenotype in bone marrow-derived macrophages (BMDMs). Finally, we show that SPION-labeled BMDMs delivered via the hepatic portal vein to mice are localized in the hepatic parenchyma resulting in a 50% drop in T2* in the liver. Engraftment of exogenous cells was confirmed via immunohistochemistry up to 3 weeks posttransplantation. DISCUSSION: A positively charged dextran-coated SPION is a promising tool to noninvasively track hepatic macrophage localization for therapeutic monitoring.


Assuntos
Rastreamento de Células/métodos , Dextranos/química , Ferro/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea/métodos , Sobrevivência Celular , Células Cultivadas , Dextranos/farmacocinética , Óxido Ferroso-Férrico/química , Óxido Ferroso-Férrico/farmacocinética , Humanos , Cirrose Hepática/terapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Tecidual
5.
Proc Natl Acad Sci U S A ; 113(22): 6265-70, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27185937

RESUMO

Fetoplacental glucocorticoid overexposure is a significant mechanism underlying fetal growth restriction and the programming of adverse health outcomes in the adult. Placental glucocorticoid inactivation by 11ß-hydroxysteroid dehydrogenase type 2 (11ß-HSD2) plays a key role. We previously discovered that Hsd11b2(-/-) mice, lacking 11ß-HSD2, show marked underdevelopment of the placental vasculature. We now explore the consequences for fetal cardiovascular development and whether this is reversible. We studied Hsd11b2(+/+), Hsd11b2(+/-), and Hsd11b2(-/-) littermates from heterozygous (Hsd11b(+/-)) matings at embryonic day (E)14.5 and E17.5, where all three genotypes were present to control for maternal effects. Using high-resolution ultrasound, we found that umbilical vein blood velocity in Hsd11b2(-/-) fetuses did not undergo the normal gestational increase seen in Hsd11b2(+/+) littermates. Similarly, the resistance index in the umbilical artery did not show the normal gestational decline. Surprisingly, given that 11ß-HSD2 absence is predicted to initiate early maturation, the E/A wave ratio was reduced at E17.5 in Hsd11b2(-/-) fetuses, suggesting impaired cardiac function. Pravastatin administration from E6.5, which increases placental vascular endothelial growth factor A and, thus, vascularization, increased placental fetal capillary volume, ameliorated the aberrant umbilical cord velocity, normalized fetal weight, and improved the cardiac function of Hsd11b2(-/-) fetuses. This improved cardiac function occurred despite persisting indications of increased glucocorticoid exposure in the Hsd11b2(-/-) fetal heart. Thus, the pravastatin-induced enhancement of fetal capillaries within the placenta and the resultant hemodynamic changes correspond with restored fetal cardiac function. Statins may represent a useful therapeutic approach to intrauterine growth retardation due to placental vascular hypofunction.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2/fisiologia , Retardo do Crescimento Fetal/prevenção & controle , Glucocorticoides/metabolismo , Cardiopatias/prevenção & controle , Doenças Placentárias/prevenção & controle , Pravastatina/farmacologia , Animais , Anticolesterolemiantes/farmacologia , Feminino , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/patologia , Cardiopatias/metabolismo , Cardiopatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Placentárias/metabolismo , Doenças Placentárias/patologia , Gravidez , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Endocrinology ; 156(12): 4592-603, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26305888

RESUMO

Chronic exposure to elevated levels of glucocorticoids has been linked to age-related cognitive decline and may play a role in Alzheimer's disease. In the brain, 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) amplifies intracellular glucocorticoid levels. We show that short-term treatment of aged, cognitively impaired C57BL/6 mice with the potent and selective 11ß-HSD1 inhibitor UE2316 improves memory, including after intracerebroventricular drug administration to the central nervous system alone. In the Tg2576 mouse model of Alzheimer's disease, UE2316 treatment of mice aged 14 months for 4 weeks also decreased the number of ß-amyloid (Aß) plaques in the cerebral cortex, associated with a selective increase in local insulin-degrading enzyme (involved in Aß breakdown and known to be glucocorticoid regulated). Chronic treatment of young Tg2576 mice with UE2316 for up to 13 months prevented cognitive decline but did not prevent Aß plaque formation. We conclude that reducing glucocorticoid regeneration in the brain improves cognition independently of reduced Aß plaque pathology and that 11ß-HSD1 inhibitors have potential as cognitive enhancers in age-associated memory impairment and Alzheimer's dementia.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Cognição/efeitos dos fármacos , Memória/efeitos dos fármacos , Placa Amiloide/patologia , Pirazóis/farmacologia , Tiofenos/farmacologia , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Comportamento Animal/efeitos dos fármacos , Córtex Cerebral/patologia , Modelos Animais de Doenças , Humanos , Insulisina/efeitos dos fármacos , Insulisina/metabolismo , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
7.
Psychoneuroendocrinology ; 60: 138-50, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26143538

RESUMO

Maternal diet during pregnancy can impact maternal behavior as well as the intrauterine environment, playing a critical role in programming offspring's physiology. In a preliminary study, we found a strong association between high-fat diet (HFD) during pregnancy and increased cannibalistic episodes and dams' mortality during late pregnancy and parturition. Based upon these data, we hypothesized that HFD during pregnancy could negatively affect neuroendocrine and metabolic regulations occurring during the final stages of pregnancy, thereby disrupting maternal behavior. To test this hypothesis, female C57BL/6J mice were fed HFD or control diet for 11 weeks until three days before the expected delivery date. Basal corticosterone plasma levels and brain levels of c-Fos were measured both before and after delivery, in addition to leptin levels in the adipose tissue. Dam's emotional behavior and social anxiety, in addition to locomotor activity were assessed before parturition. Data show that HFD led to aberrant maternal behavior, dams being characterized by behaviors related to aggression toward an unfamiliar social stimulus in the social avoidance test, in addition to decreased locomotor activity. Neural activity in HFD dams was reduced in the olfactory bulbs, a crucial brain region for social and olfactory recognition hence essential for maternal behavior. Furthermore, HFD feeding resulted in increased circulating levels of maternal corticosterone and decreased levels of leptin. In addition, the activity of the protective 11ß-dehydrogenase-2 (11ß-HSD-2) barrier in the placenta was decreased together with 11ß-dehydrogenase-1 (11ß-HSD-1) gene expression. Overall, these data suggest that HFD acts as a stressful challenge during pregnancy, impairing the neuroendocrine system and the neural activity of brain regions involved in the processing of relevant olfactory stimuli, with negative consequences on maternal physiology and behavior.


Assuntos
Encéfalo/fisiopatologia , Dieta Hiperlipídica/efeitos adversos , Glucocorticoides/fisiologia , Comportamento Materno , Estresse Psicológico/induzido quimicamente , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/biossíntese , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/biossíntese , Animais , Química Encefálica/efeitos dos fármacos , Canibalismo/psicologia , Corticosterona/sangue , Ingestão de Energia , Feminino , Feto/metabolismo , Leptina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Gravidez , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transdução de Sinais , Estresse Psicológico/fisiopatologia , Estresse Psicológico/psicologia
8.
Psychoneuroendocrinology ; 59: 59-70, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26036451

RESUMO

Stress or elevated glucocorticoids during sensitive windows of fetal development increase the risk of neuropsychiatric disorders in adult rodents and humans, a phenomenon known as glucocorticoid programming. 11ß-Hydroxysteroid dehydrogenase type 2 (11ß-HSD2), which catalyses rapid inactivation of glucocorticoids in the placenta, controls access of maternal glucocorticoids to the fetal compartment, placing it in a key position to modulate glucocorticoid programming of behavior. However, the importance of the high expression of 11ß-HSD2 within the midgestational fetal brain is unknown. To examine this, a brain-specific knockout of 11ß-HSD2 (HSD2BKO) was generated and compared to wild-type littermates. HSD2BKO have markedly diminished fetal brain 11ß-HSD2, but intact fetal body and placental 11ß-HSD2 and normal fetal and placental growth. Despite normal fetal plasma corticosterone, HSD2BKO exhibit elevated fetal brain corticosterone levels at midgestation. As adults, HSD2BKO show depressive-like behavior and have cognitive impairments. However, unlike complete feto-placental deficiency, HSD2BKO show no anxiety-like behavioral deficits. The clear mechanistic separation of the programmed components of depression and cognition from anxiety implies distinct mechanisms of pathogenesis, affording potential opportunities for stratified interventions.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Transtornos de Ansiedade/enzimologia , Encéfalo/embriologia , Encéfalo/enzimologia , Transtorno Depressivo/enzimologia , Animais , Modelos Animais de Doenças , Feminino , Desenvolvimento Fetal , Glucocorticoides/sangue , Glucocorticoides/metabolismo , Masculino , Troca Materno-Fetal/fisiologia , Camundongos , Camundongos Knockout , Placenta/metabolismo , Gravidez , Fatores de Risco , Estresse Fisiológico
9.
Eur J Neurosci ; 41(6): 787-92, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25614240

RESUMO

11ß-Hydroxysteroid dehydrogenase type 1 (11ß-HSD1) locally regenerates active glucocorticoids from their inert forms thereby amplifying intracellular levels within target tissues including the brain. We previously showed greater increases in intra-hippocampal corticosterone (CORT) levels upon Y-maze testing in aged wild-type than in 11ß-HSD1(-/-) mice coinciding with impaired and intact spatial memory, respectively. Here we examined whether ageing influences 11ß-HSD1 regulation of CORT in the dorsal hippocampus under basal conditions during the diurnal cycle and following stress. Intra-hippocampal CORT levels measured by in vivo microdialysis in freely behaving wild-type mice displayed a diurnal variation with peak levels in the evening that were significantly elevated with ageing. In contrast, the diurnal rise in intra-hippocampal CORT levels was greatly diminished in 11ß-HSD1(-/-) mice and there was no rise with ageing; basal intra-hippocampal CORT levels were similar to wild-type controls. Furthermore, a short (3 min) swim stress induced a longer lasting increase in intra-hippocampal CORT levels in wild-type mice than in 11ß-HSD1(-/-) mice despite no genotypic differences in elevation of plasma CORT. These data indicate that 11ß-HSD1 activity contributes substantially to diurnal and stress-induced increases in hippocampal CORT levels. This contribution is even greater with ageing. Thus, 11ß-HSD1 inhibition may be an attractive target for treating cognitive impairments associated with stress or ageing.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/fisiologia , Envelhecimento , Ritmo Circadiano , Corticosterona/fisiologia , Hipocampo/fisiologia , Estresse Psicológico , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Animais , Corticosterona/análise , Hipocampo/química , Masculino , Camundongos , Camundongos Knockout , Microdiálise
10.
Neurobiol Aging ; 36(1): 334-43, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25109766

RESUMO

11Beta-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) locally amplifies active glucocorticoids within specific tissues including in brain. In the hippocampus, 11ß-HSD1 messenger RNA increases with aging. Here, we report significantly greater increases in intrahippocampal corticosterone (CORT) levels in aged wild-type (WT) mice during the acquisition and retrieval trials in a Y-maze than age-matched 11ß-HSD1(-/-) mice, corresponding to impaired and intact spatial memory, respectively. Acute stress applied to young WT mice led to increases in intrahippocampal CORT levels similar to the effects of aging and impaired retrieval of spatial memory. 11ß-HSD1(-/-) mice resisted the stress-induced memory impairment. Pharmacologic inhibition of 11ß-HSD1 abolished increases in intrahippocampal CORT levels during the Y-maze trials and prevented spatial memory impairments in aged WT mice. These data provide the first in vivo evidence that dynamic increases in hippocampal 11ß-HSD1 regenerated CORT levels during learning and retrieval play a key role in age- and stress-associated impairments of spatial memory.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/fisiologia , Envelhecimento/psicologia , Glucocorticoides/metabolismo , Hipocampo/metabolismo , Memória Espacial/fisiologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Masculino , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/genética , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Pirazóis/farmacologia , Pirazóis/uso terapêutico , RNA Mensageiro/metabolismo , Estresse Psicológico/psicologia , Tiofenos/farmacologia , Tiofenos/uso terapêutico
11.
J Neurosci ; 31(11): 4188-93, 2011 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-21411659

RESUMO

Local brain amplification of glucocorticoids (GCs) by 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) plays a pivotal role in age-related memory deficits. 11ß-HSD1 deficient mice are protected from spatial memory impairments with aging, but the underlying mechanisms are unknown. To determine which brain receptors [high-affinity mineralocorticoid receptors (MRs) or low-affinity glucocorticoid receptors (GRs)] are involved, spatial memory was measured in aged 11ß-HSD1(-/-) mice before and during intracerebroventricular infusion (10 d) of spironolactone (MR antagonist) or RU486 (GR antagonist). Aged C57BL/6J control mice showed impaired spatial memory in the Y-maze; this improved with GR blockade, while MR blockade had no effect. In contrast, aged 11ß-HSD1(-/-) mice showed intact spatial memory that became impaired with MR blockade, but not GR blockade. Hippocampal MR and GR mRNA expression and plasma corticosterone levels were not significantly altered with spironolactone or RU486 in either genotype. These data support the notion that 11ß-HSD1 deficiency in aging mice leads to lower intracellular GC concentrations in brain, particularly in the hippocampus, which activate predominantly MRs to enhance memory, while in aging C57BL/6J controls, the increased intracellular GCs saturate MRs and activate predominantly GRs, thus impairing memory, an effect reversed by GR blockade.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Envelhecimento/fisiologia , Hipocampo/metabolismo , Memória/fisiologia , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Análise de Variância , Animais , Cognição/efeitos dos fármacos , Cognição/fisiologia , Corticosterona/sangue , Hipocampo/efeitos dos fármacos , Infusões Intraventriculares , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Memória/efeitos dos fármacos , Camundongos , Camundongos Knockout , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Radioimunoensaio , Receptores de Glucocorticoides/genética , Receptores de Mineralocorticoides/genética , Espironolactona/farmacologia
12.
J Neurosci ; 30(41): 13867-72, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20943927

RESUMO

11ß-Hydroxysteroid dehydrogenase type 1 (11ß-HSD1) regenerates active glucocorticoids (GCs) from intrinsically inert 11-keto substrates inside cells, including neurons, thus amplifying steroid action. Excess GC action exerts deleterious effects on the hippocampus and causes impaired spatial memory, a key feature of age-related cognitive dysfunction. Mice with complete deficiency of 11ß-HSD1 are protected from spatial memory impairments with aging. Here, we tested whether lifelong or short-term decreases in 11ß-HSD1 activity are sufficient to alter cognitive function in aged mice. Aged (24 months old) heterozygous male 11ß-HSD1 knock-out mice, with ∼60% reduction in hippocampal 11ß-reductase activity throughout life, were protected against spatial memory impairments in the Y-maze compared to age-matched congenic C57BL/6J controls. Pharmacological treatment of aged C57BL/6J mice with a selective 11ß-HSD1 inhibitor (UE1961) for 10 d improved spatial memory performance in the Y-maze (59% greater time in novel arm than vehicle control). These data support the use of selective 11ß-HSD1 inhibitors in the treatment of age-related cognitive impairments.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Envelhecimento/metabolismo , Cognição/fisiologia , Hipocampo/metabolismo , Aprendizagem em Labirinto/fisiologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Análise de Variância , Animais , Corticosterona/sangue , Masculino , Camundongos , Camundongos Knockout , Radioimunoensaio , Fatores de Tempo
13.
J Neurosci ; 30(20): 6916-20, 2010 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-20484633

RESUMO

Increased neuronal glucocorticoid exposure may underlie interindividual variation in cognitive function with aging in rodents and humans. 11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) catalyzes the regeneration of active glucocorticoids within cells (in brain and other tissues), thus amplifying steroid action. We examined whether 11beta-HSD1 plays a role in the pathogenesis of cognitive deficits associated with aging in male C57BL/6J mice. We show that 11beta-HSD1 levels increase with age in CA3 hippocampus and parietal cortex, correlating with impaired cognitive performance in the water maze. In contrast, neither circulating corticosterone levels nor tissue corticosteroid receptor expression correlates with cognition. 11beta-HSD1 elevation appears causal, since aging (18 months) male transgenic mice with forebrain-specific 11beta-HSD1 overexpression ( approximately 50% in hippocampus) exhibit premature age-associated cognitive decline in the absence of altered circulating glucocorticoid levels or other behavioral (affective) deficits. Thus, excess 11beta-HSD1 in forebrain is a cause of as well as a therapeutic target in memory impairments with aging.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Envelhecimento , Regulação da Expressão Gênica/fisiologia , Hipocampo/metabolismo , Transtornos da Memória/genética , Lobo Parietal/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Fatores Etários , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Masculino , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Mensageiro/metabolismo
14.
J Neurosci ; 27(39): 10487-96, 2007 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-17898220

RESUMO

Glucocorticoids are pivotal in the maintenance of memory and cognitive functions as well as other essential physiological processes including energy metabolism, stress responses, and cell proliferation. Normal aging in both rodents and humans is often characterized by elevated glucocorticoid levels that correlate with hippocampus-dependent memory impairments. 11Beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) amplifies local intracellular ("intracrine") glucocorticoid action; in the brain it is highly expressed in the hippocampus. We investigated whether the impact of 11beta-HSD1 deficiency in knock-out mice (congenic on C57BL/6J strain) on cognitive function with aging reflects direct CNS or indirect effects of altered peripheral insulin-glucose metabolism. Spatial learning and memory was enhanced in 12 month "middle-aged" and 24 month "aged" 11beta-HSD1(-/-) mice compared with age-matched congenic controls. These effects were not caused by alterations in other cognitive (working memory in a spontaneous alternation task) or affective domains (anxiety-related behaviors), to changes in plasma corticosterone or glucose levels, or to altered age-related pathologies in 11beta-HSD1(-/-) mice. Young 11beta-HSD1(-/-) mice showed significantly increased newborn cell proliferation in the dentate gyrus, but this was not maintained into aging. Long-term potentiation was significantly enhanced in subfield CA1 of hippocampal slices from aged 11beta-HSD1(-/-) mice. These data suggest that 11beta-HSD1 deficiency enhances synaptic potentiation in the aged hippocampus and this may underlie the better maintenance of learning and memory with aging, which occurs in the absence of increased neurogenesis.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/fisiologia , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Fatores Etários , Envelhecimento/fisiologia , Animais , Cognição/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
Neuropsychopharmacology ; 32(12): 2520-9, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17356567

RESUMO

The mechanisms by which antidepressants regulate the hypothalamic-pituitary-adrenal (HPA) axis are still unknown. The ABCB1-type multiple drug resistance (MDR) p-glycoprotein (PGP) regulates the HPA axis by limiting the access of glucocorticoids to the brain in mice and humans. Previous work in cell cultures has found that antidepressants enhance glucocorticoid receptor (GR) function in vitro by inhibiting MDR PGP, and therefore by increasing the intracellular concentration of glucocorticoids-but this model has never been tested directly in animals. Here, the tricyclic antidepressant, desipramine (20 mg/kg/day, i.p., for seven days), was administered to abcb1ab MDR PGP knockout mice (congenic on the FVB/N background strain) and to FVB/N controls. The hippocampal mRNA expression of GR, mineralocorticoid receptor (MR), MDR (Mdr1a) PGP, and 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) were measured, together with plasma corticosterone levels. In FVB/N controls, desipramine induced a significant upregulation of GR mRNA in the CA1 region (+31%; p=0.045); in contrast, in abcb1ab (-/-) mice, desipramine induced a significant downregulation of GR mRNA in the CA1 region (-45%; p=0.004). MR mRNA expression was unaltered. Desipramine decreased corticosterone levels in both FVB/N controls and in abcb1ab (-/-) mice, but in abcb1ab (-/-) mice the effects were smaller. Specifically, in FVB/N controls (but not in abcb1ab (-/-) mice), desipramine reduced corticosterone levels not only compared with saline-treated mice but also compared with the 'physiological' levels of untreated mice (-39%; p=0.05). Finally, desipramine reduced Mdr1a mRNA expression across all hippocampus areas (-9 to -23%), but had no effect on 11beta-HSD1 mRNA expression. These data support the notion that the MDR PGP is one of the molecular targets through which antidepressants regulate the HPA axis.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Antidepressivos Tricíclicos/farmacologia , Desipramina/farmacologia , Receptores de Glucocorticoides/metabolismo , Regulação para Cima/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Análise de Variância , Animais , Corticosterona/sangue , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hibridização In Situ/métodos , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro/metabolismo , Receptores de Glucocorticoides/genética
16.
J Neurosci ; 26(43): 11034-40, 2006 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-17065445

RESUMO

Pregnenolone (PREG) and dehydroepiandrosterone (DHEA) have been reported to improve memory in aged rodents. In brain, these neurosteroids are transformed predominantly into 7alpha-hydroxylated metabolites by the cytochrome P450-7B1 (CYP7B). The biological role of steroid B-ring hydroxylation is unclear. It has been proposed to generate bioactive derivatives that enhance cognition, immune, and other physiological processes. In support, 7alpha-hydroxylated DHEA increases the immune response in mice with greater potency than the parent steroid. Whether the memory-enhancing effects of PREG in rats is mediated via its 7alpha-hydroxylated metabolite 7alpha-hydroxyPREG is not known. We investigated this by treating memory-impaired aged rats (identified by their spatial memory performances in the Morris water maze task compared with young controls) with 7alpha-hydroxyPREG or PREG administered intracerebroventricularly using osmotic minipumps and then tested the rats during week 2 of steroid treatment in the eight-arm radial-arm version of the water maze (RAWM) that allows repeated assessment of learning. CYP7B bioactivity in hippocampal tissue (percentage conversion of [14C]DHEA to [14C]7alpha-hydroxyDHEA) was decreased selectively in memory-impaired aged rats compared with both young and memory-intact aged rats. 7alpha-hydroxyPREG (100 ng/h) but not PREG (100 ng/h) administration to memory-impaired aged rats for 11 d enhanced spatial memory retention (after a 30 min delay between an exposure trial 1 and test trial 2) in the RAWM. These data provide evidence for a biologically active enzyme product 7alpha-hydroxyPREG and suggests that reduced CYP7B function in the hippocampus of memory-impaired aged rats may, in part, be overcome by administration of 7alpha-hydroxyPREG.


Assuntos
17-alfa-Hidroxipregnenolona/análogos & derivados , Envelhecimento/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/administração & dosagem , Retenção Psicológica/efeitos dos fármacos , Comportamento Espacial/efeitos dos fármacos , Esteroide Hidroxilases/administração & dosagem , 17-alfa-Hidroxipregnenolona/administração & dosagem , Envelhecimento/fisiologia , Animais , Família 7 do Citocromo P450 , Injeções Intraventriculares , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Memória/efeitos dos fármacos , Memória/fisiologia , Ratos , Retenção Psicológica/fisiologia , Comportamento Espacial/fisiologia
17.
Brain Res Mol Brain Res ; 129(1-2): 189-92, 2004 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-15469896

RESUMO

Adult rats were given antidepressant drugs orally. Fluoxetine, but not moclobemide, venlafaxine, tianeptine or desipramine, increased total glucocorticoid receptor (GR) mRNA in the hippocampus after 4 weeks. Further examination revealed that GR mRNA containing the brain-specific exon 1(7) was increased across all hippocampal subregions. In contrast, expression of the major exon 1(10) and another brain-specific exon 1(5)-containing GR mRNAs were unchanged. Tissue-specific first exon usage may contribute to the differential regulation of GR by fluoxetine in brain subregions.


Assuntos
Antidepressivos de Segunda Geração/farmacologia , Fluoxetina/farmacologia , Hipocampo , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Antidepressivos de Segunda Geração/administração & dosagem , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Éxons , Fluoxetina/administração & dosagem , Regulação da Expressão Gênica , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Isoformas de Proteínas/genética , Ratos , Receptores de Glucocorticoides/genética
18.
Proc Natl Acad Sci U S A ; 101(17): 6734-9, 2004 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-15071189

RESUMO

In aging humans and rodents, inter-individual differences in cognitive function have been ascribed to variations in long-term glucocorticoid exposure. 11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) regenerates the active glucocorticoid cortisol from circulating inert cortisone, thus amplifying intracellular glucocorticoid levels in some tissues. We show that 11beta-HSD1, but not 11beta-HSD2, mRNA is expressed in the human hippocampus, frontal cortex, and cerebellum. In two randomized, double-blind, placebo-controlled crossover studies, administration of the 11beta-HSD inhibitor carbenoxolone (100 mg three times per day) improved verbal fluency (P < 0.01) after 4 weeks in 10 healthy elderly men (aged 55-75 y) and improved verbal memory (P < 0.01) after 6 weeks in 12 patients with type 2 diabetes (52-70 y). Although carbenoxolone has been reported to enhance hepatic insulin sensitivity in short-term studies, there were no changes in glycemic control or serum lipid profile, nor was plasma cortisol altered. 11beta-HSD1 inhibition may be a new approach to prevent/ameliorate cognitive decline.


Assuntos
11-beta-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , Cognição , Diabetes Mellitus Tipo 2/fisiopatologia , 11-beta-Hidroxiesteroide Desidrogenases/genética , 11-beta-Hidroxiesteroide Desidrogenases/metabolismo , Idoso , Estudos de Casos e Controles , Estudos Cross-Over , Diabetes Mellitus Tipo 2/enzimologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Placebos , RNA Mensageiro/genética
19.
Endocrinology ; 144(7): 2997-3003, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12810555

RESUMO

Obese Zucker rats have elevated basal corticosterone levels and an increased stress response suggestive of an increased activity of the hypothalamic-pituitary-adrenal (HPA) axis. We hypothesized that altered central expression of glucocorticoid receptors (GR), mineralocorticoid receptors (MR), and/or 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1) contribute to these changes. In brains from young adult male rats, in situ hybridization and Western blotting showed that obese rats had normal hippocampal GR mRNA and protein levels. In contrast, in obese rats, 11betaHSD1 mRNA levels were reduced in a subpopulation of hippocampal cells in the main neuronal layers (by 37-47%, P < 0.05), whereas 11betaHSD1 levels in sparse high-expressing cells did not differ. MR mRNA was decreased in all regions of the hippocampus (by 37-49%, P < 0.05 for CA1-2 and P < 0.01 for dentate gyrus) and in frontal cortex (by 16%, P < 0.05) in obese rats. In whole hippocampal homogenates, however, neither the protein concentration of MR by Western blot nor activity of 11betaHSD1 was measurably different between the phenotypes. To test the functional importance of lower central MR expression, groups of lean and obese rats were given spironolactone before restraint stress. In vehicle-treated animals, obese rats had higher plasma corticosterone levels than lean rats after stress (by ANOVA, P < 0.05). Spironolactone markedly increased the corticosterone response in both groups, but the incremental rise was smaller in the obese rats, so that spironolactone abolished the differences between groups. We conclude that lower levels of MR, but not GR, contribute to the increased HPA activity in the obese Zucker rats and that this seems more influential during stress than in the basal state. This may be exacerbated by impaired local regeneration of corticosterone by 11betaHSD1. These abnormalities could contribute to the subtle changes in the HPA axis in rodent and human obesity.


Assuntos
Hipocampo/fisiopatologia , Hidroxiesteroide Desidrogenases/genética , Sistema Hipotálamo-Hipofisário/fisiopatologia , Obesidade/fisiopatologia , Sistema Hipófise-Suprarrenal/fisiopatologia , Receptores de Mineralocorticoides/genética , 11-beta-Hidroxiesteroide Desidrogenases , Animais , Retroalimentação Fisiológica/fisiologia , Expressão Gênica/fisiologia , Masculino , RNA Mensageiro/análise , Ratos , Ratos Zucker , Receptores de Glucocorticoides/genética
20.
Brain Res Mol Brain Res ; 106(1-2): 117-23, 2002 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12393271

RESUMO

As rats age, a subgroup will show spatial memory impairments, along with decreased corticosteroid receptors (MR and/or GR) in the hippocampus and a hyperactive hypothalamic-pituitary-adrenal axis. In previous work, we have shown that amitriptyline treatment increases hippocampal MR mRNA and improves spatial memory in young rats but had no effect in aged rats. Here, we examine the effect of 1-month treatment with the selective 5-HT re-uptake inhibitor, fluoxetine (10 mg/kg, p.o.) on hippocampal corticosteroid receptor mRNA and spatial memory in young 4-month-old and aged 24-month-old rats. Aged rats were impaired in spatial memory compared to young controls. MR mRNA expression was reduced with ageing in all hippocampal subfields except CA4 (35% decrease in dentate gyrus (DG) and CA2, P<0.05) and GR mRNA was decreased selectively in CA1 (17% decrease, P<0.05). Fluoxetine treatment increased GR mRNA in the hippocampus of young rats (24 and 46% increase in DG and CA3, respectively, P<0.01) but had no effect on hippocampal MR mRNA expression. In contrast, in aged rats, fluoxetine treatment increased hippocampal MR mRNA selectively in CA2 (43% increase, P<0.05), but had no effect on hippocampal GR mRNA. Fluoxetine treatment did not alter watermaze performance in either young or aged rats. It appears that increased hippocampal MR (at least in the CA2 region) which may underlie the enhancement in memory processing in young rats, is insufficient to improve memory in already cognitively impaired aged rats.


Assuntos
Envelhecimento/fisiologia , Encéfalo/efeitos dos fármacos , Fluoxetina/farmacologia , Memória/fisiologia , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Animais , Encéfalo/metabolismo , Hibridização In Situ , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Memória/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos , Receptores de Glucocorticoides/genética , Receptores de Mineralocorticoides/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...