Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 346
Filtrar
3.
J Proteome Res ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652578

RESUMO

Searching for tandem mass spectrometry proteomics data against a database is a well-established method for assigning peptide sequences to observed spectra but typically cannot identify peptides harboring unexpected post-translational modifications (PTMs). Open modification searching aims to address this problem by allowing a spectrum to match a peptide even if the spectrum's precursor mass differs from the peptide mass. However, expanding the search space in this way can lead to a loss of statistical power to detect peptides. We therefore developed a method, called CONGA (combining open and narrow searches with group-wise analysis), that takes into account results from both types of searches─a traditional "narrow window" search and an open modification search─while carrying out rigorous false discovery rate control. The result is an algorithm that provides the best of both worlds: the ability to detect unexpected PTMs without a concomitant loss of power to detect unmodified peptides.

4.
bioRxiv ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38617345

RESUMO

Membrane-bound particles in plasma are composed of exosomes, microvesicles, and apoptotic bodies and represent ~1-2% of the total protein composition. Proteomic interrogation of this subset of plasma proteins augments the representation of tissue-specific proteins, representing a "liquid biopsy," while enabling the detection of proteins that would otherwise be beyond the dynamic range of liquid chromatography-tandem mass spectrometry of unfractionated plasma. We have developed an enrichment strategy (Mag-Net) using hyper-porous strong-anion exchange magnetic microparticles to sieve membrane-bound particles from plasma. The Mag-Net method is robust, reproducible, inexpensive, and requires <100 µL plasma input. Coupled to a quantitative data-independent mass spectrometry analytical strategy, we demonstrate that we can collect results for >37,000 peptides from >4,000 plasma proteins with high precision. Using this analytical pipeline on a small cohort of patients with neurodegenerative disease and healthy age-matched controls, we discovered 204 proteins that differentiate (q-value < 0.05) patients with Alzheimer's disease dementia (ADD) from those without ADD. Our method also discovered 310 proteins that were different between Parkinson's disease and those with either ADD or healthy cognitively normal individuals. Using machine learning we were able to distinguish between ADD and not ADD with a mean ROC AUC = 0.98 ± 0.06.

5.
J Proteome Res ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687997

RESUMO

Traditional database search methods for the analysis of bottom-up proteomics tandem mass spectrometry (MS/MS) data are limited in their ability to detect peptides with post-translational modifications (PTMs). Recently, "open modification" database search strategies, in which the requirement that the mass of the database peptide closely matches the observed precursor mass is relaxed, have become popular as ways to find a wider variety of types of PTMs. Indeed, in one study, Kong et al. reported that the open modification search tool MSFragger can achieve higher statistical power to detect peptides than a traditional "narrow window" database search. We investigated this claim empirically and, in the process, uncovered a potential general problem with false discovery rate (FDR) control in the machine learning postprocessors Percolator and PeptideProphet. This problem might have contributed to Kong et al.'s report that their empirical results suggest that false discovery (FDR) control in the narrow window setting might generally be compromised. Indeed, reanalyzing the same data while using a more standard form of target-decoy competition-based FDR control, we found that, after accounting for chimeric spectra as well as for the inherent difference in the number of candidates in open and narrow searches, the data does not provide sufficient evidence that FDR control in proteomics MS/MS database search is inherently problematic.

6.
bioRxiv ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38645064

RESUMO

Over the past 15 years, a variety of next-generation sequencing assays have been developed for measuring the 3D conformation of DNA in the nucleus. Each of these assays gives, for a particular cell or tissue type, a distinct picture of 3D chromatin architecture. Accordingly, making sense of the relationship between genome structure and function requires teasing apart two closely related questions: how does chromatin 3D structure change from one cell type to the next, and how do different measurements of that structure differ from one another, even when the two assays are carried out in the same cell type? In this work, we assemble a collection of chromatin 3D datasets-each represented as a 2D contact map- spanning multiple assay types and cell types. We then build a machine learning model that predicts missing contact maps in this collection. We use the model to systematically explore how genome 3D architecture changes, at the level of compartments, domains, and loops, between cell type and between assay types.

7.
iScience ; 27(5): 109570, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38646172

RESUMO

The three-dimensional organization of genomes plays a crucial role in essential biological processes. The segregation of chromatin into A and B compartments highlights regions of activity and inactivity, providing a window into the genomic activities specific to each cell type. Yet, the steep costs associated with acquiring Hi-C data, necessary for studying this compartmentalization across various cell types, pose a significant barrier in studying cell type specific genome organization. To address this, we present a prediction tool called compartment prediction using recurrent neural networks (CoRNN), which predicts compartmentalization of 3D genome using histone modification enrichment. CoRNN demonstrates robust cross-cell-type prediction of A/B compartments with an average AuROC of 90.9%. Cell-type-specific predictions align well with known functional elements, with H3K27ac and H3K36me3 identified as highly predictive histone marks. We further investigate our mispredictions and found that they are located in regions with ambiguous compartmental status. Furthermore, our model's generalizability is validated by predicting compartments in independent tissue samples, which underscores its broad applicability.

8.
bioRxiv ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38496477

RESUMO

The emergence of single-cell time-series datasets enables modeling of changes in various types of cellular profiles over time. However, due to the disruptive nature of single-cell measurements, it is impossible to capture the full temporal trajectory of a particular cell. Furthermore, single-cell profiles can be collected at mismatched time points across different conditions (e.g., sex, batch, disease) and data modalities (e.g., scRNA-seq, scATAC-seq), which makes modeling challenging. Here we propose a joint modeling framework, Sunbear, for integrating multi-condition and multi-modal single-cell profiles across time. Sunbear can be used to impute single-cell temporal profile changes, align multi-dataset and multi-modal profiles across time, and extrapolate single-cell profiles in a missing modality. We applied Sunbear to reveal sex-biased transcription during mouse embryonic development and predict dynamic relationships between epigenetic priming and transcription for cells in which multi-modal profiles are unavailable. Sunbear thus enables the projection of single-cell time-series snapshots to multi-modal and multi-condition views of cellular trajectories.

9.
Proteomics ; 24(8): e2300084, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380501

RESUMO

Assigning statistical confidence estimates to discoveries produced by a tandem mass spectrometry proteomics experiment is critical to enabling principled interpretation of the results and assessing the cost/benefit ratio of experimental follow-up. The most common technique for computing such estimates is to use target-decoy competition (TDC), in which observed spectra are searched against a database of real (target) peptides and a database of shuffled or reversed (decoy) peptides. TDC procedures for estimating the false discovery rate (FDR) at a given score threshold have been developed for application at the level of spectra, peptides, or proteins. Although these techniques are relatively straightforward to implement, it is common in the literature to skip over the implementation details or even to make mistakes in how the TDC procedures are applied in practice. Here we present Crema, an open-source Python tool that implements several TDC methods of spectrum-, peptide- and protein-level FDR estimation. Crema is compatible with a variety of existing database search tools and provides a straightforward way to obtain robust FDR estimates.


Assuntos
Algoritmos , Peptídeos , Bases de Dados de Proteínas , Peptídeos/química , Proteínas/análise , Proteômica/métodos
10.
Nature ; 626(8001): 1084-1093, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355799

RESUMO

The house mouse (Mus musculus) is an exceptional model system, combining genetic tractability with close evolutionary affinity to humans1,2. Mouse gestation lasts only 3 weeks, during which the genome orchestrates the astonishing transformation of a single-cell zygote into a free-living pup composed of more than 500 million cells. Here, to establish a global framework for exploring mammalian development, we applied optimized single-cell combinatorial indexing3 to profile the transcriptional states of 12.4 million nuclei from 83 embryos, precisely staged at 2- to 6-hour intervals spanning late gastrulation (embryonic day 8) to birth (postnatal day 0). From these data, we annotate hundreds of cell types and explore the ontogenesis of the posterior embryo during somitogenesis and of kidney, mesenchyme, retina and early neurons. We leverage the temporal resolution and sampling depth of these whole-embryo snapshots, together with published data4-8 from earlier timepoints, to construct a rooted tree of cell-type relationships that spans the entirety of prenatal development, from zygote to birth. Throughout this tree, we systematically nominate genes encoding transcription factors and other proteins as candidate drivers of the in vivo differentiation of hundreds of cell types. Remarkably, the most marked temporal shifts in cell states are observed within one hour of birth and presumably underlie the massive physiological adaptations that must accompany the successful transition of a mammalian fetus to life outside the womb.


Assuntos
Animais Recém-Nascidos , Embrião de Mamíferos , Desenvolvimento Embrionário , Gástrula , Análise de Célula Única , Imagem com Lapso de Tempo , Animais , Feminino , Camundongos , Gravidez , Animais Recém-Nascidos/embriologia , Animais Recém-Nascidos/genética , Diferenciação Celular/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário/genética , Gástrula/citologia , Gástrula/embriologia , Gastrulação/genética , Rim/citologia , Rim/embriologia , Mesoderma/citologia , Mesoderma/enzimologia , Neurônios/citologia , Neurônios/metabolismo , Retina/citologia , Retina/embriologia , Somitos/citologia , Somitos/embriologia , Fatores de Tempo , Fatores de Transcrição/genética , Transcrição Gênica , Especificidade de Órgãos/genética
11.
Nat Commun ; 15(1): 1365, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355719

RESUMO

Ribonucleoprotein complexes are composed of RNA, RNA-dependent proteins (RDPs) and RNA-binding proteins (RBPs), and play fundamental roles in RNA regulation. However, in the human malaria parasite, Plasmodium falciparum, identification and characterization of these proteins are particularly limited. In this study, we use an unbiased proteome-wide approach, called R-DeeP, a method based on sucrose density gradient ultracentrifugation, to identify RDPs. Quantitative analysis by mass spectrometry identifies 898 RDPs, including 545 proteins not yet associated with RNA. Results are further validated using a combination of computational and molecular approaches. Overall, this method provides the first snapshot of the Plasmodium protein-protein interaction network in the presence and absence of RNA. R-DeeP also helps to reconstruct Plasmodium multiprotein complexes based on co-segregation and deciphers their RNA-dependence. One RDP candidate, PF3D7_0823200, is functionally characterized and validated as a true RBP. Using enhanced crosslinking and immunoprecipitation followed by high-throughput sequencing (eCLIP-seq), we demonstrate that this protein interacts with various Plasmodium non-coding transcripts, including the var genes and ap2 transcription factors.


Assuntos
Plasmodium , RNA , Humanos , RNA/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteoma/metabolismo , Proteínas de Ligação a RNA/metabolismo , Plasmodium/genética
12.
Nat Commun ; 15(1): 1027, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310092

RESUMO

Fluorescent in situ hybridization (FISH) is a powerful method for the targeted visualization of nucleic acids in their native contexts. Recent technological advances have leveraged computationally designed oligonucleotide (oligo) probes to interrogate > 100 distinct targets in the same sample, pushing the boundaries of FISH-based assays. However, even in the most highly multiplexed experiments, repetitive DNA regions are typically not included as targets, as the computational design of specific probes against such regions presents significant technical challenges. Consequently, many open questions remain about the organization and function of highly repetitive sequences. Here, we introduce Tigerfish, a software tool for the genome-scale design of oligo probes against repetitive DNA intervals. We showcase Tigerfish by designing a panel of 24 interval-specific repeat probes specific to each of the 24 human chromosomes and imaging this panel on metaphase spreads and in interphase nuclei. Tigerfish extends the powerful toolkit of oligo-based FISH to highly repetitive DNA.


Assuntos
DNA , Sequências Repetitivas de Ácido Nucleico , Humanos , Hibridização in Situ Fluorescente/métodos , DNA/genética , Sequências Repetitivas de Ácido Nucleico/genética , Sondas de Oligonucleotídeos/genética , Sondas de DNA/genética , Oligonucleotídeos/genética
13.
Lab Invest ; 104(1): 100282, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37924947

RESUMO

Large-scale high-dimensional multiomics studies are essential to unravel molecular complexity in health and disease. We developed an integrated system for tissue sampling (CryoGrid), analytes preparation (PIXUL), and downstream multiomic analysis in a 96-well plate format (Matrix), MultiomicsTracks96, which we used to interrogate matched frozen and formalin-fixed paraffin-embedded (FFPE) mouse organs. Using this system, we generated 8-dimensional omics data sets encompassing 4 molecular layers of intracellular organization: epigenome (H3K27Ac, H3K4m3, RNA polymerase II, and 5mC levels), transcriptome (messenger RNA levels), epitranscriptome (m6A levels), and proteome (protein levels) in brain, heart, kidney, and liver. There was a high correlation between data from matched frozen and FFPE organs. The Segway genome segmentation algorithm applied to epigenomic profiles confirmed known organ-specific superenhancers in both FFPE and frozen samples. Linear regression analysis showed that proteomic profiles, known to be poorly correlated with transcriptomic data, can be more accurately predicted by the full suite of multiomics data, compared with using epigenomic, transcriptomic, or epitranscriptomic measurements individually.


Assuntos
Formaldeído , Proteômica , Camundongos , Animais , Fixadores , Fixação de Tecidos/métodos , Proteômica/métodos , Inclusão em Parafina/métodos
14.
bioRxiv ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37790381

RESUMO

Most studies of genome organization have focused on intra-chromosomal (cis) contacts because they harbor key features such as DNA loops and topologically associating domains. Inter-chromosomal (trans) contacts have received much less attention, and tools for interrogating potential biologically relevant trans structures are lacking. Here, we develop a computational framework to identify sets of loci that jointly interact in trans from Hi-C data. This method, trans-C, initiates probabilistic random walks with restarts from a set of seed loci to traverse an input Hi-C contact network, thereby identifying sets of trans-contacting loci. We validate trans-C in three increasingly complex models of established trans contacts: the Plasmodium falciparum var genes, the mouse olfactory receptor "Greek islands", and the human RBM20 cardiac splicing factory. We then apply trans-C to systematically test the hypothesis that genes co-regulated by the same trans-acting element (i.e., a transcription or splicing factor) co-localize in three dimensions to form "RNA factories" that maximize the efficiency and accuracy of RNA biogenesis. We find that many loci with multiple binding sites of the same transcription factor interact with one another in trans, especially those bound by transcription factors with intrinsically disordered domains. Similarly, clustered binding of a subset of RNA binding proteins correlates with trans interaction of the encoding loci. These findings support the existence of trans interacting chromatin domains (TIDs) driven by RNA biogenesis. Trans-C provides an efficient computational framework for studying these and other types of trans interactions, empowering studies of a poorly understood aspect of genome architecture.

15.
bioRxiv ; 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37905060

RESUMO

Cross-species comparison and prediction of gene expression profiles are important to understand regulatory changes during evolution and to transfer knowledge learned from model organisms to humans. Single-cell RNA-seq (scRNA-seq) profiles enable us to capture gene expression profiles with respect to variations among individual cells; however, cross-species comparison of scRNA-seq profiles is challenging because of data sparsity, batch effects, and the lack of one-to-one cell matching across species. Moreover, single-cell profiles are challenging to obtain in certain biological contexts, limiting the scope of hypothesis generation. Here we developed Icebear, a neural network framework that decomposes single-cell measurements into factors representing cell identity, species, and batch factors. Icebear enables accurate prediction of single-cell gene expression profiles across species, thereby providing high-resolution cell type and disease profiles in under-characterized contexts. Icebear also facilitates direct cross-species comparison of single-cell expression profiles for conserved genes that are located on the X chromosome in eutherian mammals but on autosomes in chicken. This comparison, for the first time, revealed evolutionary and diverse adaptations of X-chromosome upregulation in mammals.

16.
J Proteome Res ; 22(11): 3427-3438, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37861703

RESUMO

Quantitative measurements produced by tandem mass spectrometry proteomics experiments typically contain a large proportion of missing values. Missing values hinder reproducibility, reduce statistical power, and make it difficult to compare across samples or experiments. Although many methods exist for imputing missing values, in practice, the most commonly used methods are among the worst performing. Furthermore, previous benchmarking studies have focused on relatively simple measurements of error such as the mean-squared error between imputed and held-out values. Here we evaluate the performance of commonly used imputation methods using three practical, "downstream-centric" criteria. These criteria measure the ability to identify differentially expressed peptides, generate new quantitative peptides, and improve the peptide lower limit of quantification. Our evaluation comprises several experiment types and acquisition strategies, including data-dependent and data-independent acquisition. We find that imputation does not necessarily improve the ability to identify differentially expressed peptides but that it can identify new quantitative peptides and improve the peptide lower limit of quantification. We find that MissForest is generally the best performing method per our downstream-centric criteria. We also argue that existing imputation methods do not properly account for the variance of peptide quantifications and highlight the need for methods that do.


Assuntos
Algoritmos , Proteômica , Proteômica/métodos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem , Peptídeos/análise
17.
bioRxiv ; 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37546906

RESUMO

The identification of cell-type-specific 3D chromatin interactions between regulatory elements can help to decipher gene regulation and to interpret the function of disease-associated non-coding variants. However, current chromosome conformation capture (3C) technologies are unable to resolve interactions at this resolution when only small numbers of cells are available as input. We therefore present ChromaFold, a deep learning model that predicts 3D contact maps and regulatory interactions from single-cell ATAC sequencing (scATAC-seq) data alone. ChromaFold uses pseudobulk chromatin accessibility, co-accessibility profiles across metacells, and predicted CTCF motif tracks as input features and employs a lightweight architecture to enable training on standard GPUs. Once trained on paired scATAC-seq and Hi-C data in human cell lines and tissues, ChromaFold can accurately predict both the 3D contact map and peak-level interactions across diverse human and mouse test cell types. In benchmarking against a recent deep learning method that uses bulk ATAC-seq, DNA sequence, and CTCF ChIP-seq to make cell-type-specific predictions, ChromaFold yields superior prediction performance when including CTCF ChIP-seq data as an input and comparable performance without. Finally, fine-tuning ChromaFold on paired scATAC-seq and Hi-C in a complex tissue enables deconvolution of chromatin interactions across cell subpopulations. ChromaFold thus achieves state-of-the-art prediction of 3D contact maps and regulatory interactions using scATAC-seq alone as input data, enabling accurate inference of cell-type-specific interactions in settings where 3C-based assays are infeasible.

18.
Nat Commun ; 14(1): 5086, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607941

RESUMO

The complex life cycle of Plasmodium falciparum requires coordinated gene expression regulation to allow host cell invasion, transmission, and immune evasion. Increasing evidence now suggests a major role for epigenetic mechanisms in gene expression in the parasite. In eukaryotes, many lncRNAs have been identified to be pivotal regulators of genome structure and gene expression. To investigate the regulatory roles of lncRNAs in P. falciparum we explore the intergenic lncRNA distribution in nuclear and cytoplasmic subcellular locations. Using nascent RNA expression profiles, we identify a total of 1768 lncRNAs, of which 718 (~41%) are novels in P. falciparum. The subcellular localization and stage-specific expression of several putative lncRNAs are validated using RNA-FISH. Additionally, the genome-wide occupancy of several candidate nuclear lncRNAs is explored using ChIRP. The results reveal that lncRNA occupancy sites are focal and sequence-specific with a particular enrichment for several parasite-specific gene families, including those involved in pathogenesis and sexual differentiation. Genomic and phenotypic analysis of one specific lncRNA demonstrate its importance in sexual differentiation and reproduction. Our findings bring a new level of insight into the role of lncRNAs in pathogenicity, gene regulation and sexual differentiation, opening new avenues for targeted therapeutic strategies against the deadly malaria parasite.


Assuntos
Malária Falciparum , Malária , Parasitos , RNA Longo não Codificante , Humanos , Animais , Plasmodium falciparum/genética , RNA Longo não Codificante/genética , Malária Falciparum/genética
19.
Bioinformatics ; 39(7)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37421399

RESUMO

MOTIVATION: Modality matching in single-cell omics data analysis-i.e. matching cells across datasets collected using different types of genomic assays-has become an important problem, because unifying perspectives across different technologies holds the promise of yielding biological and clinical discoveries. However, single-cell dataset sizes can now reach hundreds of thousands to millions of cells, which remain out of reach for most multimodal computational methods. RESULTS: We propose LSMMD-MA, a large-scale Python implementation of the MMD-MA method for multimodal data integration. In LSMMD-MA, we reformulate the MMD-MA optimization problem using linear algebra and solve it with KeOps, a CUDA framework for symbolic matrix computation in Python. We show that LSMMD-MA scales to a million cells in each modality, two orders of magnitude greater than existing implementations. AVAILABILITY AND IMPLEMENTATION: LSMMD-MA is freely available at https://github.com/google-research/large_scale_mmdma and archived at https://doi.org/10.5281/zenodo.8076311.


Assuntos
Genoma , Genômica , Genômica/métodos , Projetos de Pesquisa , Análise de Dados , Análise de Célula Única , Software
20.
PLoS Comput Biol ; 19(7): e1011286, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37428809

RESUMO

Understanding the impact of regulatory variants on complex phenotypes is a significant challenge because the genes and pathways that are targeted by such variants and the cell type context in which regulatory variants operate are typically unknown. Cell-type-specific long-range regulatory interactions that occur between a distal regulatory sequence and a gene offer a powerful framework for examining the impact of regulatory variants on complex phenotypes. However, high-resolution maps of such long-range interactions are available only for a handful of cell types. Furthermore, identifying specific gene subnetworks or pathways that are targeted by a set of variants is a significant challenge. We have developed L-HiC-Reg, a Random Forests regression method to predict high-resolution contact counts in new cell types, and a network-based framework to identify candidate cell-type-specific gene networks targeted by a set of variants from a genome-wide association study (GWAS). We applied our approach to predict interactions in 55 Roadmap Epigenomics Mapping Consortium cell types, which we used to interpret regulatory single nucleotide polymorphisms (SNPs) in the NHGRI-EBI GWAS catalogue. Using our approach, we performed an in-depth characterization of fifteen different phenotypes including schizophrenia, coronary artery disease (CAD) and Crohn's disease. We found differentially wired subnetworks consisting of known as well as novel gene targets of regulatory SNPs. Taken together, our compendium of interactions and the associated network-based analysis pipeline leverages long-range regulatory interactions to examine the context-specific impact of regulatory variation in complex phenotypes.


Assuntos
Epigenoma , Estudo de Associação Genômica Ampla , Humanos , Estudo de Associação Genômica Ampla/métodos , Redes Reguladoras de Genes/genética , Genoma , Epigenômica , Polimorfismo de Nucleotídeo Único/genética , Predisposição Genética para Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...