Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 224: 105852, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428748

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological cause of coronavirus disease 2019 (COVID-19) and continues to be a major health concern worldwide. Strategies to protect individuals at high risk of COVID-19 are critical but are currently a largely unmet need. We evaluated the oral antiviral drug ensitrelvir, which specifically targets the SARS-CoV-2 3CL protease, for its efficacy as a pre-exposure prophylactic treatment. Aged BALB/c mice were subcutaneously treated with various doses of ensitrelvir 24 h prior to a lethal SARS-CoV-2 challenge infection. Mouse body weight changes, survival rates, and viral titers in the lungs were evaluated, and plasma concentrations of ensitrelvir were determined. A single subcutaneous administration of ensitrelvir at 64 mg/kg or greater 24 h prior to SARS-CoV-2 challenge infection significantly protected aged mice against lethality and inhibited body weight loss. Pharmacokinetic analysis of ensitrelvir in the aged mice suggested that plasma concentrations ≥2.99 µg/mL resulted in a significant prophylactic effect against SARS-CoV-2 infection. In the aged mouse prophylaxis model, SARS-CoV-2 titers were suppressed in the lungs of mice treated with ensitrelvir 24 h prior to challenge infection, suggesting that the prophylactic administration of ensitrelvir exerted its prophylactic effect by suppressing viral proliferation. These findings suggest that ensitrelvir is a candidate drug for pre-exposure prophylactic treatment of individuals at high risk of COVID-19.


Assuntos
COVID-19 , Indazóis , SARS-CoV-2 , Triazinas , Triazóis , Animais , Camundongos , COVID-19/prevenção & controle , Antivirais/uso terapêutico , Antivirais/farmacologia , Pulmão
2.
EBioMedicine ; 99: 104950, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38159532

RESUMO

BACKGROUND: Pulmonary infection with SARS-CoV-2 stimulates host immune responses and can also result in the progression of dysregulated and critical inflammation. Throughout the pandemic, the management and treatment of COVID-19 has been continuously updated with a range of antiviral drugs and immunomodulators. Monotherapy with oral antivirals has proven to be effective in the treatment of COVID-19. However, treatment should be initiated in the early stages of infection to ensure beneficial therapeutic outcomes, and there is still room for further consideration on therapeutic strategies using antivirals. METHODS: We studied the therapeutic effects of monotherapy with the oral antiviral ensitrelvir or the anti-inflammatory corticosteroid methylprednisolone and combination therapy with ensitrelvir and methylprednisolone in a delayed dosing model of hamsters infected with SARS-CoV-2. FINDINGS: Combination therapy with ensitrelvir and methylprednisolone improved respiratory conditions and reduced the development of pneumonia in hamsters even when the treatment was started after 2 days post-infection. The combination therapy led to a differential histological and transcriptomic pattern in comparison to either of the monotherapies, with reduced lung damage and down-regulation of expression of genes involved in the inflammatory response. Furthermore, we found that the combination treatment is effective in case of infection with either the highly pathogenic delta or circulating omicron variants. INTERPRETATION: Our results demonstrate the advantage of combination therapy with antiviral and corticosteroid drugs in COVID-19 treatment from the perspective of lung pathology and host inflammatory responses. FUNDING: Funding bodies are described in the Acknowledgments section.


Assuntos
COVID-19 , Humanos , Animais , Cricetinae , Tratamento Farmacológico da COVID-19 , Atraso no Tratamento , SARS-CoV-2 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Metilprednisolona/farmacologia , Metilprednisolona/uso terapêutico , Corticosteroides , Antivirais/farmacologia , Antivirais/uso terapêutico
3.
Viruses ; 15(10)2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37896829

RESUMO

The small-molecule antiviral drug ensitrelvir targets the 3C-like protease of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This study evaluated its inhibitory effect on viral replication in a delayed-treatment mouse model and investigated the relationship between pharmacokinetic (PK) parameters and pharmacodynamic (PD) effects. SARS-CoV-2 gamma-strain-infected BALB/c mice were orally treated with various doses of ensitrelvir starting 24 h post-infection. Effectiveness was determined 48 h after first administration based on lung viral titers. Ensitrelvir PK parameters were estimated from previously reported plasma concentration data and PK/PD analyses were performed. Ensitrelvir doses ≥ 16 mg/kg once daily, ≥8 mg/kg twice daily, or ≥8 mg/kg thrice daily for two days significantly reduced lung viral titers compared to that of the vehicle. PK/PD analyses revealed that mean AUC0-48h post-first administration, plasma concentration 48 h post-first administration (C48h), and total time above the target plasma concentration (TimeHigh) were PK parameters predictive of viral titer reduction. In conclusion, ensitrelvir dose-dependently reduced lung SARS-CoV-2 titers in mice, suggesting it inhibited viral replication. PK parameters C48h and TimeHigh were associated with sustained ensitrelvir plasma concentrations and correlated with the reduced viral titers. The findings suggest that maintaining ensitrelvir plasma concentration is effective for exerting antiviral activity against SARS-CoV-2.


Assuntos
COVID-19 , Camundongos , Animais , Inibidores de Proteases/farmacologia , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Inibidores Enzimáticos
4.
Proc Natl Acad Sci U S A ; 120(42): e2304139120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37831739

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are causing significant morbidity and mortality worldwide. Furthermore, over 1 million cases of newly emerging or re-emerging viral infections, specifically dengue virus (DENV), are known to occur annually. Because no virus-specific and fully effective treatments against these or many other viruses have been approved, there is an urgent need for novel, effective therapeutic agents. Here, we identified 2-thiouridine (s2U) as a broad-spectrum antiviral ribonucleoside analogue that exhibited antiviral activity against several positive-sense single-stranded RNA (ssRNA+) viruses, such as DENV, SARS-CoV-2, and its variants of concern, including the currently circulating Omicron subvariants. s2U inhibits RNA synthesis catalyzed by viral RNA-dependent RNA polymerase, thereby reducing viral RNA replication, which improved the survival rate of mice infected with DENV2 or SARS-CoV-2 in our animal models. Our findings demonstrate that s2U is a potential broad-spectrum antiviral agent not only against DENV and SARS-CoV-2 but other ssRNA+ viruses.


Assuntos
Nucleosídeos , Vírus de RNA de Cadeia Positiva , Animais , Camundongos , Nucleosídeos/farmacologia , Antivirais/farmacologia , SARS-CoV-2 , Replicação Viral , RNA
5.
J Antimicrob Chemother ; 78(4): 946-952, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36760083

RESUMO

OBJECTIVES: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become established in the human population, making the need to develop safe and effective treatments critical. We have developed the small-molecule antiviral ensitrelvir, which targets the 3C-like (3CL) protease of SARS-CoV-2. This study evaluated the in vitro and in vivo efficacy of ensitrelvir compared with that of another SARS-CoV-2 3CL PI, nirmatrelvir. METHODS: Cultured cells, BALB/cAJcl mice and Syrian hamsters were infected with various SARS-CoV-2 strains, including the ancestral strain WK-521, mouse-adapted SARS-CoV-2 (MA-P10) strain, Delta strain and Omicron strain. Ensitrelvir efficacy was compared with that of nirmatrelvir. Effective concentrations were determined in vitro based on virus-induced cytopathic effects, viral titres and RNA levels. Lung viral titres, nasal turbinate titres, body-weight changes, and animal survival were also monitored. RESULTS: Ensitrelvir and nirmatrelvir showed comparable antiviral activity in multiple cell lines. Both ensitrelvir and nirmatrelvir reduced virus levels in the lungs of mice and the nasal turbinates and lungs of hamsters. However, ensitrelvir demonstrated comparable or better in vivo efficacy than that of nirmatrelvir when present at similar or slightly lower unbound-drug plasma concentrations. CONCLUSIONS: Direct in vitro and in vivo efficacy comparisons of 3CL PIs revealed that ensitrelvir demonstrated comparable in vitro efficacy to that of nirmatrelvir in cell culture and exhibited equal to or greater in vivo efficacy in terms of unbound-drug plasma concentration in both animal models evaluated. The results suggest that ensitrelvir may become an important resource for treating individuals infected with SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Animais , Humanos , Inibidores de Proteases/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico
6.
Biochem Biophys Res Commun ; 645: 132-136, 2023 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-36689809

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a public health concern worldwide. Ensitrelvir (S-217622) has been evaluated as an antiviral treatment for COVID-19, targeting SARS-CoV-2 3C-like protease (3CLpro). Ensitrelvir has been reported to have comparable antiviral activity against some of the SARS-CoV-2 variants: alpha, beta, gamma, delta, and omicron (BA.1.18). In this paper, we describe that ensitrelvir is effective against newly emerging SARS-CoV-2 variants and globally prevalent 3CLpro mutations. Ensitrelvir exhibited comparable antiviral activity against SARS-CoV-2 variants, including recently emerging ones: omicron (BA1.1, BA.2, BA.2.75, BA.4, BA.5, BQ.1.1, XBB.1, and XE), mu, lambda, and theta. Genetic surveillance of SARS-CoV-2 3CLpro, the target of ensitrelvir, was conducted using a public database and identified 11 major 3CLpro mutations circulating globally (G15S, T21I, T24I, K88R, L89F, K90R, P108S, P132H, A193V, H246Y, and A255V). The 3CLpro mutation from proline to histidine at amino acid position 132 was especially identified in the omicron variant, with prevalence of 99.69%. Enzyme kinetic assay revealed that these 3CLpro mutants have enzymatic activity comparable to that of the wild type (WT). Next, we assessed the inhibitory effect of ensitrelvir against mutated 3CLpro, with it showing inhibitory effects similar to that against the WT. These in vitro data suggest that ensitrelvir will be effective against currently circulating SARS-CoV-2 variants, including omicron variants and those carrying 3CLpro mutations, which emerging novel SARS-CoV-2 variants could carry.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Peptídeo Hidrolases , Cisteína Endopeptidases/metabolismo , Antivirais/farmacologia , Antivirais/química , Inibidores de Proteases/farmacologia
7.
Sci Transl Med ; 15(679): eabq4064, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36327352

RESUMO

In parallel with vaccination, oral antiviral agents are highly anticipated to act as countermeasures for the treatment of the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Oral antiviral medication demands not only high antiviral activity but also target specificity, favorable oral bioavailability, and high metabolic stability. Although a large number of compounds have been identified as potential inhibitors of SARS-CoV-2 infection in vitro, few have proven to be effective in vivo. Here, we show that oral administration of S-217622 (ensitrelvir), an inhibitor of SARS-CoV-2 main protease (Mpro; also known as 3C-like protease), decreases viral load and ameliorates disease severity in SARS-CoV-2-infected hamsters. S-217622 inhibited viral proliferation at low nanomolar to submicromolar concentrations in cells. Oral administration of S-217622 demonstrated favorable pharmacokinetic properties and accelerated recovery from acute SARS-CoV-2 infection in hamster recipients. Moreover, S-217622 exerted antiviral activity against SARS-CoV-2 variants of concern, including the highly pathogenic Delta variant and the recently emerged Omicron BA.5 and BA.2.75 variants. Overall, our study provides evidence that S-217622, an antiviral agent that is under evaluation in a phase 3 clinical trial (clinical trial registration no. jRCT2031210350), has remarkable antiviral potency and efficacy against SARS-CoV-2 and is a prospective oral therapeutic option for COVID-19.


Assuntos
COVID-19 , Humanos , Cricetinae , SARS-CoV-2 , Carga Viral , Estudos Prospectivos , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(36): e2206104119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037386

RESUMO

Viral hemorrhagic fevers caused by members of the order Bunyavirales comprise endemic and emerging human infections that are significant public health concerns. Despite the disease severity, there are few therapeutic options available, and therefore effective antiviral drugs are urgently needed to reduce disease burdens. Bunyaviruses, like influenza viruses (IFVs), possess a cap-dependent endonuclease (CEN) that mediates the critical cap-snatching step of viral RNA transcription. We screened compounds from our CEN inhibitor (CENi) library and identified specific structural compounds that are 100 to 1,000 times more active in vitro than ribavirin against bunyaviruses, including Lassa virus, lymphocytic choriomeningitis virus (LCMV), and Junin virus. To investigate their inhibitory mechanism of action, drug-resistant viruses were selected in culture. Whole-genome sequencing revealed that amino acid substitutions in the CEN region of drug-resistant viruses were located in similar positions as those of the CEN α3-helix loop of IFVs derived under drug selection. Thus, our studies suggest that CENi compounds inhibit both bunyavirus and IFV replication in a mechanistically similar manner. Structural analysis revealed that the side chain of the carboxyl group at the seventh position of the main structure of the compound was essential for the high antiviral activity against bunyaviruses. In LCMV-infected mice, the compounds significantly decreased blood viral load, suppressed symptoms such as thrombocytopenia and hepatic dysfunction, and improved survival rates. These data suggest a potential broad-spectrum clinical utility of CENis for the treatment of both severe influenza and hemorrhagic diseases caused by bunyaviruses.


Assuntos
Antivirais , Endonucleases , Orthobunyavirus , Animais , Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Endonucleases/antagonistas & inibidores , Humanos , Camundongos , Orthobunyavirus/efeitos dos fármacos , Orthobunyavirus/genética , Orthobunyavirus/metabolismo , Replicação Viral/efeitos dos fármacos
9.
J Antimicrob Chemother ; 77(11): 2984-2991, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-35914182

RESUMO

OBJECTIVES: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19) and a devastating worldwide health concern. Development of safe and effective treatments is not only important for interventions during the current pandemic, but also for providing general treatment options moving forward. We have developed ensitrelvir, an antiviral compound that targets the 3C-like protease of SARS-CoV-2. In this study, a delayed-treatment mouse model was used to clarify the potential in vivo efficacy of ensitrelvir. METHODS: Female BALB/cAJcl mice of different ages were infected with the SARS-CoV-2 gamma strain (hCoV-19/Japan/TY7-501/2021) or mouse-adapted SARS-CoV-2 MA-P10 and then 24 h post-infection orally administered various doses of ensitrelvir or vehicle. Viral titres and RNA levels in the lungs were quantified using VeroE6/TMPRSS2 cells and RT-qPCR, respectively. Body weight loss, survival, lung weight, cytokine/chemokine production, nucleocapsid protein expression and lung pathology were evaluated to investigate the in vivo efficacy of ensitrelvir. RESULTS: Based on infectious viral titres and viral RNA levels in the lungs of infected mice, ensitrelvir reduced viral loads in a dose-dependent manner. The antiviral efficacy correlated with increased survival, reduced body weight loss, reduced pulmonary lesions and suppression of inflammatory cytokine/chemokine levels. CONCLUSIONS: This was the first evaluation of the in vivo anti-SARS-CoV-2 efficacy of ensitrelvir in a delayed-treatment mouse model. In this model, ensitrelvir demonstrated high antiviral potential and suppressed lung inflammation and lethality caused by SARS-CoV-2 infection. The findings support the continued clinical development of ensitrelvir as an antiviral agent to treat patients with COVID-19.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Animais , Feminino , Camundongos , Antivirais/uso terapêutico , Antivirais/farmacologia , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Pulmão , SARS-CoV-2 , Redução de Peso
10.
J Med Chem ; 65(9): 6499-6512, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35352927

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in millions of deaths and threatens public health and safety. Despite the rapid global spread of COVID-19 vaccines, effective oral antiviral drugs are urgently needed. Here, we describe the discovery of S-217622, the first oral noncovalent, nonpeptidic SARS-CoV-2 3CL protease inhibitor clinical candidate. S-217622 was discovered via virtual screening followed by biological screening of an in-house compound library, and optimization of the hit compound using a structure-based drug design strategy. S-217622 exhibited antiviral activity in vitro against current outbreaking SARS-CoV-2 variants and showed favorable pharmacokinetic profiles in vivo for once-daily oral dosing. Furthermore, S-217622 dose-dependently inhibited intrapulmonary replication of SARS-CoV-2 in mice, indicating that this novel noncovalent inhibitor could be a potential oral agent for treating COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Vacinas contra COVID-19 , Proteases 3C de Coronavírus , Humanos , Camundongos , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico
11.
Viruses ; 14(1)2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-35062315

RESUMO

Human infections caused by the H5 highly pathogenic avian influenza virus (HPAIV) sporadically threaten public health. The susceptibility of HPAIVs to baloxavir acid (BXA), a new class of inhibitors for the influenza virus cap-dependent endonuclease, has been confirmed in vitro, but it has not yet been fully characterized. Here, the efficacy of BXA against HPAIVs, including recent H5N8 variants, was assessed in vitro. The antiviral efficacy of baloxavir marboxil (BXM) in H5N1 virus-infected mice was also investigated. BXA exhibited similar in vitro activities against H5N1, H5N6, and H5N8 variants tested in comparison with seasonal and other zoonotic strains. Compared with oseltamivir phosphate (OSP), BXM monotherapy in mice infected with the H5N1 HPAIV clinical isolate, the A/Hong Kong/483/1997 strain, also caused a significant reduction in viral titers in the lungs, brains, and kidneys, thereby preventing acute lung inflammation and reducing mortality. Furthermore, compared with BXM or OSP monotherapy, combination treatments with BXM and OSP using a 48-h delayed treatment model showed a more potent effect on viral replication in the organs, accompanied by improved survival. In conclusion, BXM has a potent antiviral efficacy against H5 HPAIV infections.


Assuntos
Dibenzotiepinas/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Morfolinas/farmacologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Piridonas/farmacologia , Triazinas/farmacologia , Células A549 , Animais , Antivirais/farmacologia , Quimiocinas/metabolismo , Citocinas/metabolismo , Quimioterapia Combinada , Feminino , Humanos , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Oseltamivir/farmacologia , Pneumonia/tratamento farmacológico , Análise de Sequência , Replicação Viral/efeitos dos fármacos
12.
iScience ; 24(10): 103120, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34541466

RESUMO

Newly emerging or re-emerging viral infections continue to cause significant morbidity and mortality every year worldwide, resulting in serious effects on both health and the global economy. Despite significant drug discovery research against dengue viruses (DENVs) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), no fully effective and specific drugs directed against these viruses have been discovered. Here, we examined the anti-DENV activity of tubercidin derivatives from a compound library from Hokkaido University and demonstrated that 5-hydroxymethyltubercidin (HMTU, HUP1108) possessed both potent anti-flavivirus and anti-coronavirus activities at submicromolar levels without significant cytotoxicity. Furthermore, HMTU inhibited viral RNA replication and specifically inhibited replication at the late stages of the SARS-CoV-2 infection process. Finally, we demonstrated that HMTU 5'-triphosphate inhibited RNA extension catalyzed by the viral RNA-dependent RNA polymerase. Our findings suggest that HMTU has the potential of serving as a lead compound for the development of a broad spectrum of antiviral agents, including SARS-CoV-2.

13.
Antiviral Res ; 184: 104969, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33160000

RESUMO

Dengue virus (DENV) infection is one of the most important infectious diseases in tropical and subtropical regions around the world. Previously, we performed an initial phenotypic screening of 7000 compounds using DENV type 2 (DENV2)-infected BHK-21 cells to identify small molecules which could inhibit virus replication. In this study, we describe two novel compounds with anti-DENV2 activity, tentatively named Compound-X and Compound-Y. Both compounds possess a quinolone skeleton, and the EC50s of Compound-X and Compound-Y against DENV2 were 3.9 µM and 9.2 µM, respectively. Based on a DENV replicon assay, it was suggested that these compounds have anti-DENV2 activity by inhibition of a step in virus replication. Furthermore, using mutational analysis we obtained compounds-resistant to DENV2 infection and identified a mutation, V130A in the NS5 methyltransferase (MTase) domain. However, these compounds did not inhibit MTase activity. In addition, incorporation of an additional NS1 N246D mutation with the NS5 V130A mutation in DENV2 resulted in recovery of viral replication and a further reduction of the sensitivity to the quinolone compounds by an unknown mechanism. Therefore further investigations are required to clarify the antiviral mechanisms of these quinolone compounds.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Quinolonas/farmacologia , Replicação Viral/efeitos dos fármacos , Células A549 , Substituição de Aminoácidos , Animais , Linhagem Celular , Sobrevivência Celular , Humanos , Metiltransferases/efeitos dos fármacos , Mutação , Ácido Micofenólico/farmacologia , RNA Viral , Ribavirina/farmacologia
14.
Sci Rep ; 9(1): 3466, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837531

RESUMO

Human infections with avian-origin influenza A(H7N9) virus represent a serious threat to global health; however, treatment options are limited. Here, we show the inhibitory effects of baloxavir acid (BXA) and its prodrug baloxavir marboxil (BXM), a first-in-class cap-dependent endonuclease inhibitor, against A(H7N9), in vitro and in vivo. In cell culture, BXA at four nanomolar concentration achieved a 1.5-2.8 log reduction in virus titers of A(H7N9), including the NA-R292K mutant virus and highly pathogenic avian influenza viruses, whereas NA inhibitors or favipiravir required approximately 20-fold or higher concentrations to achieve the same levels of reduction. A(H7N9)-specific amino acid polymorphism at position 37, implicated in BXA binding to the PA endonuclease domain, did not impact on BXA susceptibility. In mice, oral administration of BXM at 5 and 50 mg/kg twice a day for 5 days completely protected from a lethal A/Anhui/1/2013 (H7N9) challenge, and reduced virus titers more than 2-3 log in the lungs. Furthermore, the potent therapeutic effects of BXM in mice were still observed when a higher virus dose was administered or treatment was delayed up to 48 hours post infection. These findings support further investigation of BXM for A(H7N9) treatment in humans.


Assuntos
Antivirais/farmacologia , Endonucleases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Subtipo H7N9 do Vírus da Influenza A/efeitos dos fármacos , Subtipo H7N9 do Vírus da Influenza A/enzimologia , Oxazinas/farmacologia , Piridinas/farmacologia , Tiepinas/farmacologia , Triazinas/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Citocinas/biossíntese , Dibenzotiepinas , Modelos Animais de Doenças , Patos , Humanos , Mediadores da Inflamação/metabolismo , Influenza Aviária/tratamento farmacológico , Influenza Aviária/virologia , Influenza Humana/tratamento farmacológico , Influenza Humana/metabolismo , Influenza Humana/virologia , Camundongos , Morfolinas , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Piridonas , Carga Viral
15.
Jpn J Infect Dis ; 71(6): 448-454, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30068888

RESUMO

Dengue virus (DENV) has a considerable impact on the global health and is known to cause morbidity and mortality every year. By passaging DENV2 in baby hamster kidney (BHK)-21 cells, we isolated a mutant clone of DENV2 that shows rapid cytopathic effects in BHK-21 cells as compared with that showed by the parent strain. To investigate the relationship between amino acid mutations and proliferation activity of the isolated DENV2 clone, we performed full genome sequencing and identified 3 amino acid mutations in the coding region, the envelope T120K, NS4A M85T, and NS4B G124A. Genetically modified recombinant DENV2 (rDENV2) carrying the NS4A M85T and NS4B G124A mutations produced higher titers of progeny virus in BHK-21, Vero, and Huh-7 cells than in the wild-type (WT) rDENV2. rDENV2 with mutations at NS4A M85T and NS4B G124A failed to produce any plaques in C6/36 mosquito cell lines. Furthermore, rDENV2 possessing only the NS4B G124A mutation showed no plaque production in C6/36 cells but had higher viral titers in Vero and Huh-7 cells than the WT rDENV2 had. Our results clearly showed that the DENV2 NS4B G124A mutation has opposing effects on the virus proliferation in mosquito and certain mammalian cell lines.


Assuntos
Vírus da Dengue/fisiologia , Proteínas de Membrana/genética , Mutação de Sentido Incorreto , Proteínas não Estruturais Virais/genética , Replicação Viral , Substituição de Aminoácidos , Animais , Linhagem Celular , Cricetinae , Culicidae , Vírus da Dengue/genética , Genética Reversa , Inoculações Seriadas , Ensaio de Placa Viral , Sequenciamento Completo do Genoma
16.
Antiviral Res ; 155: 60-66, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29758236

RESUMO

Dengue virus (DENV) is the causative agent of dengue fever and dengue hemorrhagic fever/dengue shock syndrome. At present, no antiviral drugs are available for treatment DENV infections. In this study, a screening system based on a DENV-infected cell-based assay identified a novel anti-DENV agent with a benzimidazole skeleton, named Compound-B, which demonstrated antiviral activity specific to four DENV serotypes (EC50: 1.32-4.12 µM). Analysis of a single amino acid substitution of Compound-B-resistant DENV2 revealed that mutation C87S in the non-structural protein 4A (NS4A) contributes to resistance to Compound-B.


Assuntos
Antivirais/farmacologia , Benzimidazóis/farmacologia , Vírus da Dengue/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Células A549 , Substituição de Aminoácidos , Antivirais/química , Benzimidazóis/química , Vírus da Dengue/genética , Farmacorresistência Viral/genética , Humanos , Mutação , Sorogrupo , Bibliotecas de Moléculas Pequenas , Proteínas não Estruturais Virais/genética
17.
Bioorg Med Chem Lett ; 27(15): 3586-3590, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28539222

RESUMO

NS2B-NS3 protease is an essential enzyme for the replication of dengue virus (DENV), which continues to be a serious threat to worldwide public health. We designed and synthesized a series of cyclic peptides mimicking the substrates of this enzyme, and assayed their activity against the DENV-2 NS2B-NS3 protease. The introduction of aromatic residues at the appropriate positions and conformational restriction generated the most promising cyclic peptide with an IC50 of 0.95µM against NS2B-NS3 protease. Cyclic peptides with proper positioning of additional arginines and aromatic residues exhibited antiviral activity against DENV. Furthermore, replacing the C-terminal amide bond of the polybasic amino acid sequence with an amino methylene moiety stabilized the cyclic peptides against hydrolysis by NS2B-NS3 protease, while maintaining their enzyme inhibitory activity and antiviral activity.


Assuntos
Antivirais/química , Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Dengue/tratamento farmacológico , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Serina Endopeptidases/metabolismo , Dengue/virologia , Vírus da Dengue/enzimologia , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia
18.
Virology ; 505: 102-112, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28236746

RESUMO

Chikungunya fever (CHIKF) is caused by chikungunya virus (CHIKV) infection which is a re-emerging mosquito-borne zoonosis. At present, there are no approved therapeutics for CHIKF. Herein, we have investigated candidate compounds which can inhibit CHIKV infection. Screening of chemical compound libraries were performed and one candidate, a benzimidazole-related compound designated Compound-A was found to inhibit infection by several CHIKV strains and a Sindbis virus strain at nanomolar concentrations. To investigate the inhibitory mechanism of action, a Compound-A resistant CHIKV (res-CHIKV) was isolated and a key mutation associated with resistance was identified by reverse-genetic recombinant CHIKVs containing amino acid substitutions present in res-CHIKV. These results demonstrated that the target site of Compound-A was the M2295 residue in the nonstructural protein 4 (nsP4), which is located in one of the functional domains of RNA-dependent RNA-polymerase (RdRp). We also confirmed that Compound-A inhibits RdRp function of CHIKV by using CHIKV replicons.


Assuntos
Antivirais/farmacologia , Benzimidazóis/farmacologia , Vírus Chikungunya/efeitos dos fármacos , Farmacorresistência Viral/genética , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Proteínas não Estruturais Virais/antagonistas & inibidores , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Sequência de Bases , Febre de Chikungunya/tratamento farmacológico , Febre de Chikungunya/virologia , Vírus Chikungunya/genética , Chlorocebus aethiops , Células HEK293 , Humanos , RNA Polimerase Dependente de RNA/genética , Alinhamento de Sequência , Análise de Sequência de RNA , Células Vero , Proteínas não Estruturais Virais/genética , Replicação Viral/efeitos dos fármacos
19.
Virus Res ; 215: 121-8, 2016 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-26869397

RESUMO

Rabies is an invariably fatal disease caused by Rabies virus (RABV), a member of the family Rhabdoviridae, genus Lyssavirus. Once central nervous infection occurs and symptoms develop, the case fatality rate approaches 100% despite availability of post-exposure prophylaxis. Therefore, new antiviral therapies for rabies are urgently required. Antivirals which can inhibit virus replication can be identified through screening of small compounds, however, as RABV infection does not generate easily discernible cytopathic effects in vitro, cell viability assays may not be feasible to observe antiviral activity of small compounds against RABV. In this study, recombinant RABVs (rRABVs) encoding NanoLuc luciferase (NanoLuc) were generated to facilitate the screening of small compound libraries. NanoLuc expression was confirmed in single-step growth cures of virus infection and showed that the rRABVs were capable of viral replication without decrease of luciferase activity through ten serial passages. Furthermore, the rRABVs were able to quantify the antiviral activity of the nucleoside analogue ribavirin against RABV in vitro. These findings confirm the potential of the rRABV encoding NanoLuc system to facilitate screening of small compounds to inhibit RABV infection.


Assuntos
Antivirais/isolamento & purificação , Avaliação Pré-Clínica de Medicamentos/métodos , Genes Reporter , Luciferases/análise , Vírus da Raiva/efeitos dos fármacos , Vírus da Raiva/crescimento & desenvolvimento , Coloração e Rotulagem/métodos , Luciferases/genética , Vírus da Raiva/genética
20.
PLoS One ; 6(9): e24837, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21931859

RESUMO

In previous studies on the mechanism underlying megakaryocyte-specific gene expression, several ETS motifs were found in each megakaryocyte-specific gene promoter. Although these studies suggested that several ETS family proteins regulate megakaryocyte-specific gene expression, only a few ETS family proteins have been identified. Platelet factor 4 (PF4) is a megakaryocyte-specific gene and its promoter includes multiple ETS motifs. We had previously shown that ETS-1 binds to an ETS motif in the PF4 promoter. However, the functions of the other ETS motifs are still unclear. The goal of this study was to investigate a novel functional ETS motif in the PF4 promoter and identify proteins binding to the motif. In electrophoretic mobility shift assays and a chromatin immunoprecipitation assay, FLI-1, ELF-1, and GABP bound to the -51 ETS site. Expression of FLI-1, ELF-1, and GABP activated the PF4 promoter in HepG2 cells. Mutation of a -51 ETS site attenuated FLI-1-, ELF-1-, and GABP-mediated transactivation of the promoter. siRNA analysis demonstrated that FLI-1, ELF-1, and GABP regulate PF4 gene expression in HEL cells. Among these three proteins, only FLI-1 synergistically activated the promoter with GATA-1. In addition, only FLI-1 expression was increased during megakaryocytic differentiation. Finally, the importance of the -51 ETS site for the activation of the PF4 promoter during physiological megakaryocytic differentiation was confirmed by a novel reporter gene assay using in vitro ES cell differentiation system. Together, these data suggest that FLI-1, ELF-1, and GABP regulate PF4 gene expression through the -51 ETS site in megakaryocytes and implicate the differentiation stage-specific regulation of PF4 gene expression by multiple ETS factors.


Assuntos
Fator Plaquetário 4/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Animais , Sítios de Ligação , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Citometria de Fluxo , Fator de Transcrição de Proteínas de Ligação GA/genética , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Células Hep G2 , Humanos , Megacariócitos/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Fator Plaquetário 4/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-ets/genética , RNA Interferente Pequeno , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Transativadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...