Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35686729

RESUMO

Gene duplication is crucial to generating novel signaling pathways during evolution. However, it remains unclear how the redundant proteins produced by gene duplication ultimately acquire new interaction specificities to establish insulated paralogous signaling pathways. Here, we used ancestral sequence reconstruction to resurrect and characterize a bacterial two-component signaling system that duplicated in α-proteobacteria. We determined the interaction specificities of the signaling proteins that existed before and immediately after this duplication event and then identified key mutations responsible for establishing specificity in the two systems. Just three mutations, in only two of the four interacting proteins, were sufficient to establish specificity of the extant systems. Some of these mutations weakened interactions between paralogous systems to limit crosstalk. However, others strengthened interactions within a system, indicating that the ancestral interaction, although functional, had the potential to be strengthened. Our work suggests that protein-protein interactions with such latent potential may be highly amenable to duplication and divergence.


Assuntos
Alphaproteobacteria , Evolução Molecular , Duplicação Gênica , Mutação , Filogenia , Transdução de Sinais
2.
Mol Microbiol ; 117(4): 851-870, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34964191

RESUMO

Type I toxin-antitoxin (TA) systems typically consist of a protein toxin that imbeds in the inner membrane where it can oligomerize and form pores that change membrane permeability, and an RNA antitoxin that interacts directly with toxin mRNA to inhibit its translation. In Escherichia coli, symE/symR is annotated as a type I TA system with a non-canonical toxin. SymE was initially suggested to be an endoribonuclease, but has predicted structural similarity to DNA binding proteins. To better understand SymE function, we used RNA-seq to examine cells ectopically producing it. Although SymE drives major changes in gene expression, we do not find strong evidence of endoribonucleolytic activity. Instead, our biochemical and cell biological studies indicate that SymE binds DNA. We demonstrate that the toxicity of symE overexpression likely stems from its ability to drive severe nucleoid condensation, which disrupts DNA and RNA synthesis and leads to DNA damage, similar to the effects of overproducing the nucleoid-associated protein H-NS. Collectively, our results suggest that SymE represents a new class of nucleoid-associated proteins that is widely distributed in bacteria.


Assuntos
Antitoxinas , Proteínas de Escherichia coli , Antitoxinas/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , RNA Mensageiro/metabolismo
3.
mBio ; 12(5): e0201221, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34544284

RESUMO

Toxin-antitoxin systems are widely distributed genetic modules typically featuring toxins that can inhibit bacterial growth and antitoxins that can reverse inhibition. Although Escherichia coli encodes 11 toxins with known or putative endoribonuclease activity, the targets of most of these toxins remain poorly characterized. Using a new RNA sequencing (RNA-seq) pipeline that enables the mapping and quantification of RNA cleavage with single-nucleotide resolution, we characterized the targets and specificities of 9 endoribonuclease toxins from E. coli. We found that these toxins use low-information cleavage motifs to cut a significant proportion of mRNAs in E. coli, but not tRNAs or the rRNAs from mature ribosomes. However, all the toxins, including those that are ribosome dependent and cleave only translated RNA, inhibit ribosome biogenesis. This inhibition likely results from the cleavage of ribosomal protein transcripts, which disrupts the stoichiometry and biogenesis of new ribosomes and causes the accumulation of aberrant ribosome precursors. Collectively, our results provide a comprehensive, global analysis of endoribonuclease-based toxin-antitoxin systems in E. coli and support the conclusion that, despite their diversity, each disrupts translation and ribosome biogenesis. IMPORTANCE Toxin-antitoxin (TA) systems are widespread genetic modules found in almost all bacteria that can regulate their growth and may play prominent roles in phage defense. Escherichia coli encodes 11 TA systems in which the toxin is a known or predicted endoribonuclease. The targets and cleavage specificities of these endoribonucleases have remained largely uncharacterized, precluding an understanding of how each impacts cell growth and an assessment of whether they have distinct or overlapping targets. Using a new and broadly applicable RNA-seq pipeline, we carried out a global analysis of 9 endoribonuclease toxins from E. coli. We found that each uses a relatively low-information cleavage motif to cut a large proportion of mRNAs in E. coli, but not tRNAs or mature rRNAs. Notably, although the precise set of targets varies, each toxin efficiently disrupts ribosome biogenesis, primarily by cleaving the mRNAs of ribosomal proteins. In sum, the analyses presented provide new, comprehensive insights into the cleavage specificities and targets of almost all endoribonuclease toxins in E. coli. Despite different specificities, our work reveals a striking commonality in function, as each toxin disrupts ribosome biogenesis and translation.


Assuntos
Antitoxinas/metabolismo , Toxinas Bacterianas/metabolismo , Endorribonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Antitoxinas/genética , Toxinas Bacterianas/genética , Endorribonucleases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Sistemas Toxina-Antitoxina
4.
Elife ; 102021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33825680

RESUMO

We examine how a complex transcription network composed of seven 'master' regulators and hundreds of target genes evolved over a span of approximately 70 million years. The network controls biofilm formation in several Candida species, a group of fungi that are present in humans both as constituents of the microbiota and as opportunistic pathogens. Using a variety of approaches, we observed two major types of changes that have occurred in the biofilm network since the four extant species we examined last shared a common ancestor. Master regulator 'substitutions' occurred over relatively long evolutionary times, resulting in different species having overlapping but different sets of master regulators of biofilm formation. Second, massive changes in the connections between the master regulators and their target genes occurred over much shorter timescales. We believe this analysis is the first detailed, empirical description of how a complex transcription network has evolved.


Assuntos
Biofilmes , Candida albicans/fisiologia , Evolução Molecular , Redes Reguladoras de Genes/fisiologia , Candida albicans/genética
5.
Elife ; 92020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33107822

RESUMO

Protein-protein interaction specificity is often encoded at the primary sequence level. However, the contributions of individual residues to specificity are usually poorly understood and often obscured by mutational robustness, sequence degeneracy, and epistasis. Using bacterial toxin-antitoxin systems as a model, we screened a combinatorially complete library of antitoxin variants at three key positions against two toxins. This library enabled us to measure the effect of individual substitutions on specificity in hundreds of genetic backgrounds. These distributions allow inferences about the general nature of interface residues in promoting specificity. We find that positive and negative contributions to specificity are neither inherently coupled nor mutually exclusive. Further, a wild-type antitoxin appears optimized for specificity as no substitutions improve discrimination between cognate and non-cognate partners. By comparing crystal structures of paralogous complexes, we provide a rationale for our observations. Collectively, this work provides a generalizable approach to understanding the logic of molecular recognition.


Assuntos
Antitoxinas/metabolismo , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Mesorhizobium/metabolismo , Antitoxinas/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Toxinas Bacterianas/química , Evolução Molecular , Biblioteca Gênica , Ligação Proteica
6.
Elife ; 62017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28327289

RESUMO

The rewiring of gene regulatory networks can generate phenotypic novelty. It remains an open question, however, how the large number of connections needed to form a novel network arise over evolutionary time. Here, we address this question using the network controlled by the fungal transcription regulator Ndt80. This conserved protein has undergone a dramatic switch in function-from an ancestral role regulating sporulation to a derived role regulating biofilm formation. This switch in function corresponded to a large-scale rewiring of the genes regulated by Ndt80. However, we demonstrate that the Ndt80-target gene connections were undergoing extensive rewiring prior to the switch in Ndt80's regulatory function. We propose that extensive drift in the Ndt80 regulon allowed for the exploration of alternative network structures without a loss of ancestral function, thereby facilitating the formation of a network with a new function.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fungos/genética , Fungos/fisiologia , Redes Reguladoras de Genes , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Biofilmes/crescimento & desenvolvimento , Evolução Biológica , Regulon , Esporos Fúngicos/crescimento & desenvolvimento
7.
Artigo em Inglês | MEDLINE | ID: mdl-26657905

RESUMO

The rewiring of gene regulatory networks over evolutionary timescales produces changes in the patterns of gene expression and is a major source of diversity among species. Yet the molecular mechanisms underlying evolutionary rewiring are only beginning to be understood. Here, we discuss recent analyses in ascomycete yeasts that have revealed several general principles of network rewiring. Specifically, we discuss how transcription networks can maintain a functional output despite changes in mechanism, how specific types of constraints alter available evolutionary trajectories, and how regulatory rewiring can ultimately lead to phenotypic novelty. We also argue that the structure and "logic" of extant gene regulatory networks can largely be accounted for by constraints that shape their evolutionary trajectories.


Assuntos
Ascomicetos/genética , Evolução Biológica , Redes Reguladoras de Genes/genética , Evolução Molecular , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...