Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39001072

RESUMO

Internet of Things (IoT) devices are leading to advancements in innovation, efficiency, and sustainability across various industries. However, as the number of connected IoT devices increases, the risk of intrusion becomes a major concern in IoT security. To prevent intrusions, it is crucial to implement intrusion detection systems (IDSs) that can detect and prevent such attacks. IDSs are a critical component of cybersecurity infrastructure. They are designed to detect and respond to malicious activities within a network or system. Traditional IDS methods rely on predefined signatures or rules to identify known threats, but these techniques may struggle to detect novel or sophisticated attacks. The implementation of IDSs with machine learning (ML) and deep learning (DL) techniques has been proposed to improve IDSs' ability to detect attacks. This will enhance overall cybersecurity posture and resilience. However, ML and DL techniques face several issues that may impact the models' performance and effectiveness, such as overfitting and the effects of unimportant features on finding meaningful patterns. To ensure better performance and reliability of machine learning models in IDSs when dealing with new and unseen threats, the models need to be optimized. This can be done by addressing overfitting and implementing feature selection. In this paper, we propose a scheme to optimize IoT intrusion detection by using class balancing and feature selection for preprocessing. We evaluated the experiment on the UNSW-NB15 dataset and the NSL-KD dataset by implementing two different ensemble models: one using a support vector machine (SVM) with bagging and another using long short-term memory (LSTM) with stacking. The results of the performance and the confusion matrix show that the LSTM stacking with analysis of variance (ANOVA) feature selection model is a superior model for classifying network attacks. It has remarkable accuracies of 96.92% and 99.77% and overfitting values of 0.33% and 0.04% on the two datasets, respectively. The model's ROC is also shaped with a sharp bend, with AUC values of 0.9665 and 0.9971 for the UNSW-NB15 dataset and the NSL-KD dataset, respectively.

2.
Sensors (Basel) ; 22(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35808403

RESUMO

Ensuring the reliability of data gathering from every connected device is an essential issue for promoting the advancement of the next paradigm shift, i.e., Industry 4.0. Blockchain technology is becoming recognized as an advanced tool. However, data collaboration using blockchain has not progressed sufficiently among companies in the industrial supply chain (SC) that handle sensitive data, such as those related to product quality, etc. There are two reasons why data utilization is not sufficiently advanced in the industrial SC. The first is that manufacturing information is top secret. Blockchain mechanisms, such as Bitcoin, which uses PKI, require plaintext to be shared between companies to verify the identity of the company that sent the data. Another is that the merits of data collaboration between companies have not been materialized. To solve these problems, this paper proposes a business-to-business collaboration system using homomorphic encryption and blockchain techniques. Using the proposed system, each company can exchange encrypted confidential information and utilize the data for its own business. In a trial, an equipment manufacturer was able to identify the quality change caused by a decrease in equipment performance as a cryptographic value from blockchain and to identify the change one month earlier without knowing the quality value.


Assuntos
Blockchain , Comércio , Confidencialidade , Reprodutibilidade dos Testes , Tecnologia
3.
Entropy (Basel) ; 24(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35741501

RESUMO

A ring oscillator is a well-known circuit used for generating random numbers, and interested readers can find many research results concerning the evaluation of the randomness with a packaged test suit. However, the authors think there is room for evaluating the unpredictability of a sequence from another viewpoint. In this paper, the authors focus on Wold's RO-based generator and propose a statistical test to numerically evaluate the randomness of the RO-based generator. The test adopts the state transition probabilities in a Markov process and is designed to check the uniformity of the probabilities based on hypothesis testing. As a result, it is found that the RO-based generator yields a biased output from the viewpoint of the transition probability if the number of ROs is small. More precisely, the transitions 01→01 and 11→11 happen frequently when the number l of ROs is less than or equal to 10. In this sense, l>10 is recommended for use in any application, though a packaged test suit is passed. Thus, the authors believe that the proposed test contributes to evaluating the unpredictability of a sequence when used together with available statistical test suits, such as NIST SP800-22.

4.
Entropy (Basel) ; 23(9)2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34573793

RESUMO

A cloud service to offer entropy has been paid much attention to. As one of the entropy sources, a physical random number generator is used as a true random number generator, relying on its irreproducibility. This paper focuses on a physical random number generator using a field-programmable gate array as an entropy source by employing ring oscillator circuits as a representative true random number generator. This paper investigates the effects of an XOR gate in the oscillation circuit by observing the output signal period. It aims to reveal the relationship between inputs and the output through the XOR gate in the target generator. The authors conduct two experiments to consider the relevance. It is confirmed that combining two ring oscillators with an XOR gate increases the complexity of the output cycle. In addition, verification using state transitions showed that the probability of the state transitions was evenly distributed by increasing the number of ring oscillator circuits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA