Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 843: 156732, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35716743

RESUMO

Lakes are considered important regulators of atmospheric greenhouse gases (GHG). We estimated late summer open water GHG fluxes in nine hemiboreal lakes in Estonia classified under different lake types according to the European Water Framework Directive (WFD). We also used the WFD typology to provide an improved estimate of the total GHG emission from all Estonian lakes with a gross surface area of 2204 km2 representing 45,227 km2 of hemiboreal landscapes (the territory of Estonia). The results demonstrate largely variable CO2 fluxes among the lake types with most active emissions from Alkalitrophic (Alk), Stratified Alkalitrophic (StratAlk), Dark Soft and with predominant binding in Coastal, Very Large, and Light Soft lakes. The CO2 fluxes correlated strongly with dissolved CO2 saturation (DCO2) values at the surface. Highest CH4 emissions were measured from the Coastal lake type, followed by Light Soft, StratAlk, and Alk types; Coastal, Light Soft, and StratAlk were emitting CH4 partly as bubbles. The only emitter of N2O was the Alk type. We measured weak binding of N2O in Dark Soft and Coastal lakes, while in all other studied lake types, the N2O fluxes were too small to be quantified. Diversely from the common viewpoint of lakes as net sources of both CO2 and CH4, it turns out from our results that at least in late summer, Estonian lakes are net sinks of both CO2 alone and the sum of CO2 and CH4. This is mainly caused by the predominant CO2 sink function of Lake Peipsi forming ¾ of the total lake area and showing negative net emissions even after considering the Global Warming Potential (GWP) of other GHGs. Still, by converting CH4 data into CO2 equivalents, the combined emission of all Estonian lakes (8 T C day-1) is turned strongly positive: 2720 T CO2 equivalents per day.


Assuntos
Gases de Efeito Estufa , Dióxido de Carbono/análise , Efeito Estufa , Gases de Efeito Estufa/análise , Metano/análise , Óxido Nitroso , Receptores Proteína Tirosina Quinases , Água
2.
PLoS One ; 17(5): e0267133, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35617295

RESUMO

Photoautotrophic picoplankton (0.2-2 µm) can be a major contributor to primary production and play a significant part in the ecosystem carbon flow. However, the understanding about the dynamics of both eukaryotic and prokaryotic components of picoplankton in shallow eutrophic freshwater environments is still poor. Very few studies in these ecosystems reveal the taxonomic composition of picoeukaryotes. The main objective of this study was to investigate the seasonal dynamics of phototrophic picoplankton with the emphasis on the eukaryote community composition in a large shallow, eutrophic lake of the northern temperate zone (Lake Võrtsjärv). Phytoplankton pigments were employed to determine the taxonomic composition of photoautotrophic picoplankton. We found out that photoautotrophic picoplankton constitutes an important part of the phytoplankton community in Lake Võrtsjärv and its contribution can be highly variable (from ~9.3% to ~39%) in different years. The eukaryotic photoautotrophic picoplankton was dominated by diatoms followed by chrysophytes and other minor groups. Picoeukaryotes were prevailing in low-light conditions and low temperatures as their predominance in the picoplankton community was tightly linked to the presence or absence of ice cover. Ice cover strongly suppressed the growth of picocyanobacteria. Total phosphorus, turbidity and metazooplankton abundance had a clear relationship with photoautotrophic picoplankton chlorophyll a.


Assuntos
Diatomáceas , Lagos , Clorofila A , Ecossistema , Eucariotos , Lagos/microbiologia , Fitoplâncton
3.
Sci Total Environ ; 829: 154572, 2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35306066

RESUMO

Sediment phosphorus (P) recycling is one of the key issues in lake water quality management. We studied sediment P mobility in Võrtsjärv, a large shallow lake in Estonia using both sorption experiments and long-term (1985-2020) monitoring data of the lake. Over the years studied, the lake has undergone a decline in external phosphorus loading (EL), while no improvement in phytoplankton indicators was observed. The results of the sorption experiments revealed that it may be successfully used as a tool to determine P forms involved in P retention, as up to 100% of the P from the water column was detected in sediments. Incubation of wet sediment is preferred to dry because of the sensitivity of organic P to desiccation. In the sediments of Võrtsjärv, the labile P (Lab-P) and iron bound (Fe-P) fractions are the major forms of the mobile pool that supply internal P load as sediment released P. The internal P load calculated from summer total P (TP) increases (ILin situ) in the water column was on average 42%, but could reach 240% of EL at extreme environmental conditions. ILin situ was correlated with the active area, which resembles the area involved in redox-related P release in polymictic lakes, and with the mean bottom shear stress in summer. ILin situ showed a similar decreasing pattern as the external P load over the years 1985-2020, and was likely driven by the decrease of the pool of releasable P. Similarly, the decreases in sediment loading by P retention in our P sorption experiment were associated with decreases in the concentration of the potentially mobile P forms (mainly Lab-P and Fe-P). These results show that changes in external P loading can successfully control internal P loading and are useful in water quality management of large lakes.


Assuntos
Lagos , Poluentes Químicos da Água , Monitoramento Ambiental , Eutrofização , Sedimentos Geológicos , Fósforo/análise , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 818: 151807, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34808160

RESUMO

We aimed to predict cyanobacteria biomass and nitrate (NO3-) concentrations in Lake Võrtsjärv, a large, shallow, and eutrophic lake in Estonia. We used a model chain based on the succession of a mechanistic (INCA-N) model and an empirical, generalized linear model. INCA-N model calibration and validation was performed with long term climate and catchment parameters. We constructed twelve scenarios as combinations of climate forcing from the Intergovernmental Panel on Climate Change (IPCC, 3 scenarios), land conversion (forest to agriculture, 2 scenarios), and fertilizer use (2 scenarios). Models predicted 46% of the variance of cyanobacteria biomass and 65% of that of NO3- concentrations. The model chain simulated that scenarios comprising both forest conversion to agricultural lands and a greater use of fertilizer per surface area unit would cause increases in lacustrine NO3- (up to twice the historical mean) and cyanobacteria biomass (up to a four-fold increase compared to the historical mean). The changes in NO3- concentrations and cyanobacteria biomass were more pronounced in low and moderate warming scenarios than in high warming scenarios because of increased denitrification rates in a warmer climate. Our findings show the importance of reducing anthropogenic pressures on lake catchments in order to reduce harmful pollutant and microalgae proliferation, and highlight the counterintuitive effects of multiple stressor interactions on lake functioning.


Assuntos
Cianobactérias , Lagos , Biomassa , Mudança Climática , Eutrofização , Lagos/microbiologia , Nitratos
5.
Sci Total Environ ; 760: 144117, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33383318

RESUMO

So far, research on plant-associated macroinvertebrates, even if conducted on a large number of water bodies, has mostly focused on a relatively small area, permitting limited conclusions to be drawn regarding potentially broader geographic effects, including climate. Some recent studies have shown that the composition of epiphytic communities may differ considerably among climatic zones. To assess this phenomenon, we studied macroinvertebrates associated with the common reed Phragmites australis (Cav.) Trin. ex Steud in 46 shallow lakes using a common protocol. The lakes, located in nine countries, covered almost the entire European latitudinal range (from <48°N to 61°N) and captured much of the variability in lake size and nutrient content in the region. A Poisson Generalized Linear Mixed Model (GLMM) showed the number of macroinvertebrate epiphytic taxa to be negatively associated with water conductivity and positively associated with medium ice cover duration (approximately 1 month). A Gamma GLMM showed a positive effect of chlorophyll a on the density of macroinvertebrates, and a significantly greater density in lakes located at the lowest and highest latitudes. Individual taxa responded differently to lake environmental conditions across climate zones. Chironomidae dominated in all climate zones, but their contribution to total density decreased with increasing latitude, with progressively greater proportions of Naidinae, Asellidae, Ephemeroptera and Trichoptera. Our study demonstrates that epiphytic macroinvertebrate fauna, even when analyzed at low taxonomic resolution, exhibits clear differences in diversity, relative abundance of individual taxa and total density, shaped both by geographic and anthropogenic variables. The results were discussed in the context of climate change. To our best knowledge this is the first study to examine epiphytic fauna carried out on a European scale.


Assuntos
Invertebrados , Lagos , Animais , Clorofila A , Mudança Climática , Ecossistema
6.
Water Res ; 190: 116715, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33310445

RESUMO

Lake eutrophication is a pervasive problem globally, particularly serious in agricultural and densely populated areas. Whenever nutrients nitrogen and phosphorus do not limit phytoplankton growth directly, high growth rates will rapidly lead to biomass increases causing self-shading and light-limitation, and eventually CO2 depletion. The paradigm of phytoplankton limitation by nutrients and light is so pervasively established, that the lack of nutrient limitation is ordinarily interpreted as sufficient evidence for the condition of light limitation, without considering the possibility of limitation by inorganic carbon. Here, we firstly evaluated how frequently CO2 undersaturation occurs in a set of eutrophic lakes in the Pampa plains. Our results confirm that conditions of CO2 undersaturation develop much more frequently (yearly 34%, summer 44%) in these agriculturally impacted lakes than in deep, temperate lakes in forested watersheds. Secondly, we used Generalized Additive Models to fit trends in CO2 concentration considering three drivers: total incident irradiance, chlorophyll a concentration, and lake depth; in eight multi-year datasets from eutrophic lakes from Europe, North and South America, Asia and New Zealand. CO2 depletion was more often observed at high irradiance levels, and shallow water. CO2 depletion also occurred at high chlorophyll concentration. Finally, we identified occurrences of light- and carbon-limitation at the whole-lake scale. The different responses of chlorophyll a and CO2 allowed us to develop criteria for detecting conditions of CO2 limitation. For the first time, we provided whole-lake evidence of carbon limitation of phytoplankton biomass. CO2 increases and eutrophication represent two major and converging environmental problems that have additive and contrasting effects, promoting phytoplankton, and also leading to carbon depletion. Their interactions deserve further exploration and imaginative approaches to deal with their effects.


Assuntos
Lagos , Fitoplâncton , Biomassa , Carbono , Dióxido de Carbono , China , Clorofila A , Europa (Continente) , Eutrofização , Nova Zelândia , Nitrogênio/análise , Fósforo/análise
7.
Glob Chang Biol ; 26(12): 6831-6851, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32893967

RESUMO

Submerged macrophytes are of key importance for the structure and functioning of shallow lakes and can be decisive for maintaining them in a clear water state. The ongoing climate change affects the macrophytes through changes in temperature and precipitation, causing variations in nutrient load, water level and light availability. To investigate how these factors jointly determine macrophyte dominance and growth, we conducted a highly standardized pan-European experiment involving the installation of mesocosms in lakes. The experimental design consisted of mesotrophic and eutrophic nutrient conditions at 1 m (shallow) and 2 m (deep) depth along a latitudinal temperature gradient with average water temperatures ranging from 14.9 to 23.9°C (Sweden to Greece) and a natural drop in water levels in the warmest countries (Greece and Turkey). We determined percent plant volume inhabited (PVI) of submerged macrophytes on a monthly basis for 5 months and dry weight at the end of the experiment. Over the temperature gradient, PVI was highest in the shallow mesotrophic mesocosms followed by intermediate levels in the shallow eutrophic and deep mesotrophic mesocosms, and lowest levels in the deep eutrophic mesocosms. We identified three pathways along which water temperature likely affected PVI, exhibiting (a) a direct positive effect if light was not limiting; (b) an indirect positive effect due to an evaporation-driven water level reduction, causing a nonlinear increase in mean available light; and (c) an indirect negative effect through algal growth and, thus, high light attenuation under eutrophic conditions. We conclude that high temperatures combined with a temperature-mediated water level decrease can counterbalance the negative effects of eutrophic conditions on macrophytes by enhancing the light availability. While a water level reduction can promote macrophyte dominance, an extreme reduction will likely decrease macrophyte biomass and, consequently, their capacity to function as a carbon store and food source.


Assuntos
Lagos , Água , Nutrientes , Suécia , Temperatura
8.
Nat Ecol Evol ; 4(8): 1060-1068, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32541802

RESUMO

Climate and land-use change drive a suite of stressors that shape ecosystems and interact to yield complex ecological responses (that is, additive, antagonistic and synergistic effects). We know little about the spatial scales relevant for the outcomes of such interactions and little about effect sizes. These knowledge gaps need to be filled to underpin future land management decisions or climate mitigation interventions for protecting and restoring freshwater ecosystems. This study combines data across scales from 33 mesocosm experiments with those from 14 river basins and 22 cross-basin studies in Europe, producing 174 combinations of paired-stressor effects on a biological response variable. Generalized linear models showed that only one of the two stressors had a significant effect in 39% of the analysed cases, 28% of the paired-stressor combinations resulted in additive effects and 33% resulted in interactive (antagonistic, synergistic, opposing or reversal) effects. For lakes, the frequencies of additive and interactive effects were similar for all spatial scales addressed, while for rivers these frequencies increased with scale. Nutrient enrichment was the overriding stressor for lakes, with effects generally exceeding those of secondary stressors. For rivers, the effects of nutrient enrichment were dependent on the specific stressor combination and biological response variable. These results vindicate the traditional focus of lake restoration and management on nutrient stress, while highlighting that river management requires more bespoke management solutions.


Assuntos
Ecossistema , Água Doce , Biota , Europa (Continente) , Rios
9.
Sci Total Environ ; 707: 135887, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-31862432

RESUMO

Disentangling the relative role of species sorting and dispersal limitation in biological communities has become one of the main issues for community ecologists and biogeographers. In this study, we analysed a data set of epiphytic diatoms comprising 34 lakes from six European countries. This data set covers a relatively large latitudinal gradient to elucidate which processes are affecting the distribution of diatom communities on a broad spatial extent. Our results show strong environmental effects on the composition of the diatom communities, while the spatial factor effects were weak, emphasising that compositional variation was mainly due to species turnover. Our data support information from the literature that local abiotic factors are the main predictors controlling the compositional variation of diatom assemblages in European shallow lakes. More specifically, changes in species composition were driven mainly by nutrient content in Northern Europe, whereas lakes located in Southern Europe were more affected by conductivity and lake depth. Our results solve pending questions in the spatial ecology of diatoms by proving that species turnover is stronger than nestedness at any spatial scale, and give support to the use of epiphytic diatoms as biological indicators for shallow lakes.


Assuntos
Diatomáceas , Lagos , Clima , Europa (Continente) , Geografia
10.
Harmful Algae ; 89: 101688, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31672224

RESUMO

The coexistence of potentially toxic bloom-forming cyanobacteria (CY) and generally smaller-sized grazer communities has raised the question of zooplankton (ZP) ability to control harmful cyanobacterial blooms and highlighted the need for species-specific research on ZP-CY trophic interactions in naturally occurring communities. A combination of HPLC, molecular and stable isotope analyses was used to assess in situ the importance of CY as a food source for dominant crustacean ZP species and to quantify the grazing on potentially toxic strains of Microcystis during bloom formation in large eutrophic Lake Peipsi (Estonia). Aphanizomenon, Dolichospermum, Gloeotrichia and Microcystis dominated bloom-forming CY, while Microcystis was the major genus producing cyanotoxins all over the lake. Grazing studies showed that CY, and especially colonial CY, formed a significant, and also preferred component of algae ingested by the cladocerans Bosmina spp. and Daphnia spp. while this was not the case for the more selective calanoid copepod Eudiaptomus gracilis. Molecular analyses confirmed the presence of CY, including Microcystis, in ZP guts. Further analyses using qPCR targeting cyanobacterial genus-specific mcyE synthase genes indicated that potentially toxic strains of Microcystis can be ingested directly or indirectly by all the dominant crustacean grazers. However, stable isotope analyses indicated that little, if any, assimilation from ingested bloom-forming CY occurred. The study suggests that CY, and particularly Microcystis with both potentially toxic and non-toxic strains, can be widely ingested by cladoceran grazers during a bloom event with implications for control of CY abundance and for transfer of CY toxins through the food web.


Assuntos
Cianobactérias , Microcystis , Animais , Dieta , Lagos , Zooplâncton
11.
Sci Rep ; 9(1): 10450, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320731

RESUMO

Calcium (Ca) is an essential element for almost all living organisms. Here, we examined global variation and controls of freshwater Ca concentrations, using 440 599 water samples from 43 184 inland water sites in 57 countries. We found that the global median Ca concentration was 4.0 mg L-1 with 20.7% of the water samples showing Ca concentrations ≤ 1.5 mg L-1, a threshold considered critical for the survival of many Ca-demanding organisms. Spatially, freshwater Ca concentrations were strongly and proportionally linked to carbonate alkalinity, with the highest Ca and carbonate alkalinity in waters with a pH around 8.0 and decreasing in concentrations towards lower pH. However, on a temporal scale, by analyzing decadal trends in >200 water bodies since the 1980s, we observed a frequent decoupling between carbonate alkalinity and Ca concentrations, which we attributed mainly to the influence of anthropogenic acid deposition. As acid deposition has been ameliorated, in many freshwaters carbonate alkalinity concentrations have increased or remained constant, while Ca concentrations have rapidly declined towards or even below pre-industrial conditions as a consequence of recovery from anthropogenic acidification. Thus, a paradoxical outcome of the successful remediation of acid deposition is a globally widespread freshwater Ca concentration decline towards critically low levels for many aquatic organisms.

12.
Eur J Protistol ; 67: 59-70, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30453233

RESUMO

We estimated the consumption of planktonic ciliates by fish larvae in the Väinameri Sea (a shallow semi-enclosed bay of the Baltic Sea) and Lake Võrtsjärv (a shallow and eutrophic lake). Our primary hypothesis was that planktonic ciliates constitute a substantial component of the diet of fish larvae in both environments. We also assumed that the contribution of ciliates to larval nutrition is bigger in lacustrine than in marine environment because ciliates are usually more abundant in lakes. The nutrition of field collected larval fish was determined by gut content analysis using epifluorescence microscopy. Our study revealed that ciliates occurred in the alimentary tracts of all fish species examined. We discovered that the consumption of ciliates by first-feeding fish larvae contributed approximately 40 and 60% of their total consumed carbon in the Väinameri and in Võrtsjärv, respectively. Ciliates represent essentially important food for fish larvae and sufficient protozoan food may enhance larval growth in the beginning of the exogenous feeding and shorten the most vulnerable period in larval stage before shifting to larger prey.


Assuntos
Baías , Cilióforos/fisiologia , Cadeia Alimentar , Lagos , Animais , Peixes/metabolismo , Conteúdo Gastrointestinal
13.
PLoS One ; 13(12): e0209568, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30589880

RESUMO

Climate change in recent decades has been identified as a significant threat to natural environments and human wellbeing. This is because some of the contemporary changes to climate are abrupt and result in persistent changes in the state of natural systems; so called regime shifts (RS). This study aimed to detect and analyse the timing and strength of RS in Estonian climate at the half-century scale (1966-2013). We demonstrate that the extensive winter warming of the Northern Hemisphere in the late 1980s was represented in atmospheric, terrestrial, freshwater and marine systems to an extent not observed before or after the event within the studied time series. In 1989, abiotic variables displayed statistically significant regime shifts in atmospheric, river and marine systems, but not in lake and bog systems. This was followed by regime shifts in the biotic time series of bogs and marine ecosystems in 1990. However, many biotic time series lacked regime shifts, or the shifts were uncoupled from large-scale atmospheric circulation. We suggest that the latter is possibly due to complex and temporally variable interactions between abiotic and biotic elements with ecosystem properties buffering biotic responses to climate change signals, as well as being affected by concurrent anthropogenic impacts on natural environments.


Assuntos
Atmosfera , Mudança Climática , Meio Ambiente , Mudança Climática/história , Ecossistema , Estônia , Geografia , História do Século XX , História do Século XXI , Humanos
14.
Eur J Protistol ; 64: 1-12, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29621651

RESUMO

We analysed changes in the abundance, biomass and cell size of the microbial food web community (bacteria, heterotrophic nanoflagellates, ciliates) at contrasting nutrient concentrations and temperatures during a simulated heat wave. We used 24 mesocosms mimicking shallow lakes in which two nutrient levels (unenriched and enriched by adding nitrogen and phosphorus) and three different temperature scenarios (ambient, IPCC A2 scenario and A2+%50) are simulated (4 replicates of each). Experiments using the mesocosms have been running un-interrupted since 2003. A 1-month heat wave was imitated by an extra 5 °C increase in the previously heated mesocosms (from 1st July to 1st August 2014). Changes in water temperature induced within a few days a strong effect on the microbial food web functioning, demonstrating a quick response of microbial communities to the changes in environment, due to their short generation times. Warming and nutrients showed synergistic effects. Microbial assemblages of heterotrophic nanoflagellates and ciliates responded positively to the heating, the increase being largest in the enriched mesocosms. The results indicate that warming and nutrients in combination can set off complex interactions in the microbial food web functioning.


Assuntos
Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Cilióforos/efeitos dos fármacos , Cadeia Alimentar , Lagos , Nitrogênio/farmacologia , Fósforo/farmacologia , Fitoplâncton/efeitos dos fármacos , Cilióforos/fisiologia , Mudança Climática , Lagos/química , Lagos/microbiologia , Lagos/parasitologia , Fitoplâncton/fisiologia , Densidade Demográfica , Temperatura
15.
Naturwissenschaften ; 105(3-4): 25, 2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-29582138

RESUMO

The magnitude of lateral dissolved inorganic carbon (DIC) export from terrestrial ecosystems to inland waters strongly influences the estimate of the global terrestrial carbon dioxide (CO2) sink. At present, no reliable number of this export is available, and the few studies estimating the lateral DIC export assume that all lakes on Earth function similarly. However, lakes can function along a continuum from passive carbon transporters (passive open channels) to highly active carbon transformers with efficient in-lake CO2 production and loss. We developed and applied a conceptual model to demonstrate how the assumed function of lakes in carbon cycling can affect calculations of the global lateral DIC export from terrestrial ecosystems to inland waters. Using global data on in-lake CO2 production by mineralization as well as CO2 loss by emission, primary production, and carbonate precipitation in lakes, we estimated that the global lateral DIC export can lie within the range of [Formula: see text] to [Formula: see text] Pg C yr-1 depending on the assumed function of lakes. Thus, the considered lake function has a large effect on the calculated lateral DIC export from terrestrial ecosystems to inland waters. We conclude that more robust estimates of CO2 sinks and sources will require the classification of lakes into their predominant function. This functional lake classification concept becomes particularly important for the estimation of future CO2 sinks and sources, since in-lake carbon transformation is predicted to be altered with climate change.


Assuntos
Carbono/química , Ecologia/métodos , Ecossistema , Lagos/química , Modelos Teóricos
16.
Sci Total Environ ; 610-611: 1288-1297, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28851149

RESUMO

Organic matter (OM) has numerous geochemical and ecological functions in inland waters and can affect water quality. Different parameters of aquatic OM are measured with various methods as no single analytical tool can provide definitive structural or functional information about it. In the present paper we review different OM metrics used in the European Union (EU) lake surveillance monitoring programmes and assess their suitability to provide sufficient data about the brownification and enrichment with oxygen consuming substances in European lakes. In the EU Water Framework Directive (WFD), metrics of OM are not mandatory physico-chemical parameters, but only recommended parameters to characterize water transparency, oxygenation conditions or acidification status. Our analysis shows that, as lake OM is monitored under the WFD in only 14 countries, no Europe-wide conclusions on the situation regarding brownification and organic enrichment can be drawn based on these data. Applied parameters in lake surveillance monitoring programmes are biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic carbon (TOC), dissolved organic carbon (DOC), water colour (WCol), and yellow substance. Different national OM metrics used avoid getting a broad picture of lake OM concentration changes in Europe over the last decades. Furthermore, our results demonstrate that the possibilities to convert different OM parameters to each other are limited because empirical relationships between them are region-specific. OM sensors for continuous measurements and remote sensing surveys could improve the effectiveness of lake OM monitoring, especially its temporal and spatial representativeness. It would be highly suggested to include in lake monitoring programmes also methods (e.g. absorbance or fluorescence spectroscopy) allowing to characterize the composition of OM as it influences strongly the biogeochemical role of OM in lakes.

17.
Sci Total Environ ; 625: 185-193, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29289004

RESUMO

Autotrophic picoplankton (0.2-2µm) can be a significant contributor to primary production and hence play an important role in carbon flow. The phytoplankton community structure in the Baltic Sea is very region specific and the understanding of the composition and dynamics of pico-size phytoplankton is generally poor. The main objective of this study was to determine the contribution of picoeukaryotic algae and their taxonomic composition in late summer phytoplankton community of the West-Estonian Archipelago Sea. We found that about 20% of total chlorophyll a (Chl a) in this area belongs to autotrophic picoplankton. With increasing total Chl a, the Chl a of autotrophic picoplankton increased while its contribution in total Chl a decreased. Picoeukaryotes play an important role in the coastal area of the Baltic Sea where they constituted around 50% of the total autotrophic picoplankton biomass. The most abundant groups of picoeukaryotic algae were cryptophytes (16%), chlorophytes (13%) and diatoms (9%). Picocyanobacteria were clearly dominated by phycoerythrin containing Synechococcus. The parallel use of different assessment methods (CHEMTAX and flow cytometry) revealed the share of eukaryotic and prokaryotic part of autotrophic picoplankton.


Assuntos
Processos Autotróficos , Clorofila/análise , Fitoplâncton/isolamento & purificação , Clorofila A , Estônia , Citometria de Fluxo , Fitoplâncton/classificação , Água do Mar
18.
Sci Total Environ ; 621: 352-359, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29190558

RESUMO

We aimed at quantifying the importance of limnological variables in the decadal rise of cyanobacteria biomass in shallow hemiboreal lakes. We constructed estimates of cyanobacteria (blue-green algae) biomass in a large, eutrophic lake (Estonia, Northeastern Europe) from a database comprising 28 limnological variables and spanning more than 50years of monitoring. Using a dual-model approach consisting in a boosted regression trees (BRT) followed by a generalized least squares (GLS) model, our results revealed that six variables were most influential for assessing the variance of cyanobacteria biomass. Cyanobacteria response to nitrate concentration and rotifer abundance was negative, whereas it was positive to pH, temperature, cladoceran and copepod biomass. Response to total phosphorus (TP) and total phosphorus to total nitrogen ratio was very weak, which suggests that actual in-lake TP concentration is still above limiting values. The most efficient GLS model, which explained nearly two thirds (r2=0.65) of the variance of cyanobacteria biomass included nitrate concentration, water temperature and pH. The very high number of observations (maximum n=525) supports the robustness of the models. Our results suggest that the decadal rise of blue-green algae in shallow lakes lies in the interaction between cultural eutrophication and global warming which bring in-lake physical and chemical conditions closer to cyanobacteria optima.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Eutrofização , Lagos/microbiologia , Animais , Biomassa , Cladocera , Copépodes , Estônia , Fósforo/análise , Rotíferos
19.
Ecol Lett ; 20(1): 98-111, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27889953

RESUMO

Winter conditions are rapidly changing in temperate ecosystems, particularly for those that experience periods of snow and ice cover. Relatively little is known of winter ecology in these systems, due to a historical research focus on summer 'growing seasons'. We executed the first global quantitative synthesis on under-ice lake ecology, including 36 abiotic and biotic variables from 42 research groups and 101 lakes, examining seasonal differences and connections as well as how seasonal differences vary with geophysical factors. Plankton were more abundant under ice than expected; mean winter values were 43.2% of summer values for chlorophyll a, 15.8% of summer phytoplankton biovolume and 25.3% of summer zooplankton density. Dissolved nitrogen concentrations were typically higher during winter, and these differences were exaggerated in smaller lakes. Lake size also influenced winter-summer patterns for dissolved organic carbon (DOC), with higher winter DOC in smaller lakes. At coarse levels of taxonomic aggregation, phytoplankton and zooplankton community composition showed few systematic differences between seasons, although literature suggests that seasonal differences are frequently lake-specific, species-specific, or occur at the level of functional group. Within the subset of lakes that had longer time series, winter influenced the subsequent summer for some nutrient variables and zooplankton biomass.


Assuntos
Ecossistema , Camada de Gelo , Lagos , Plâncton/fisiologia , Estações do Ano
20.
Water Res ; 102: 32-40, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27318445

RESUMO

Understanding of the true role of lakes in the global carbon cycle requires reliable estimates of dissolved organic carbon (DOC) and there is a strong need to develop remote sensing methods for mapping lake carbon content at larger regional and global scales. Part of DOC is optically inactive. Therefore, lake DOC content cannot be mapped directly. The objectives of the current study were to estimate the relationships of DOC and other water and environmental variables in order to find the best proxy for remote sensing mapping of lake DOC. The Boosted Regression Trees approach was used to clarify in which relative proportions different water and environmental variables determine DOC. In a studied large and shallow eutrophic lake the concentrations of DOC and coloured dissolved organic matter (CDOM) were rather high while the seasonal and interannual variability of DOC concentrations was small. The relationships between DOC and other water and environmental variables varied seasonally and interannually and it was challenging to find proxies for describing seasonal cycle of DOC. Chlorophyll a (Chl a), total suspended matter and Secchi depth were correlated with DOC and therefore are possible proxies for remote sensing of seasonal changes of DOC in ice free period, while for long term interannual changes transparency-related variables are relevant as DOC proxies. CDOM did not appear to be a good predictor of the seasonality of DOC concentration in Lake Võrtsjärv since the CDOM-DOC coupling varied seasonally. However, combining the data from Võrtsjärv with the published data from six other eutrophic lakes in the world showed that CDOM was the most powerful predictor of DOC and can be used in remote sensing of DOC concentrations in eutrophic lakes.


Assuntos
Monitoramento Ambiental , Lagos , Carbono , Água , Poluentes Químicos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...