Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(11): 113411, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37952155

RESUMO

Phenotypic heterogeneity in monogenic neurodevelopmental disorders can arise from differential severity of variants underlying disease, but how distinct alleles drive variable disease presentation is not well understood. Here, we investigate missense mutations in DNA methyltransferase 3A (DNMT3A), a DNA methyltransferase associated with overgrowth, intellectual disability, and autism, to uncover molecular correlates of phenotypic heterogeneity. We generate a Dnmt3aP900L/+ mouse mimicking a mutation with mild to moderate severity and compare phenotypic and epigenomic effects with a severe R878H mutation. P900L mutants exhibit core growth and behavioral phenotypes shared across models but show subtle epigenomic changes, while R878H mutants display extensive disruptions. We identify mutation-specific dysregulated genes that may contribute to variable disease severity. Shared transcriptomic disruption identified across mutations overlaps dysregulation observed in other developmental disorder models and likely drives common phenotypes. Together, our findings define central drivers of DNMT3A disorders and illustrate how variable epigenomic disruption contributes to phenotypic heterogeneity in neurodevelopmental disease.


Assuntos
DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3A , Animais , Camundongos , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Epigênese Genética , Epigenômica , Mutação/genética
2.
Ann Neurol ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37706347

RESUMO

OBJECTIVE: Exposure of neonatal macaques to the antiseizure medications phenobarbital and midazolam (PbM) causes widespread apoptotic death of neurons and oligodendrocytes. We studied behavior and neurocognitive performance in 12 to 24 month-old macaques treated as neonates with PbM. METHODS: A total of 14 monkeys received phenobarbital and midazolam over 24 hours under normothermia (n = 8) or mild hypothermia (n = 6). Controls (n = 8) received no treatment. Animals underwent testing in the human intruder paradigm at ages 12 and 18 months, and a 3-step stimulus discrimination task at ages 12, 18, and 24 months. RESULTS: Animals treated with PbM displayed lower scores for environmental exploration, and higher scores for locomotion and vocalizations compared with controls. Combined PbM and hypothermia resulted in lower scores for aggression and vigilance at 12 months compared with controls and normothermic PbM animals. A mixed-effects generalized linear model was used to test for differences in neurocognitive performance between the control and PbM groups in the first step of the stimulus discrimination task battery (shape center baited to shape center non-baited). The odds of passing this step differed by group (p = 0.044). At any given age, the odds of passing for a control animal were 9.53-fold (95% CI 1.06-85) the odds for a PbM animal. There was also evidence suggesting a higher learning rate in the shape center non-baited for the control relative to the PbM group (Cox model HR 2.13, 95% CI 1.02-4.43; p = 0.044). INTERPRETATION: These findings demonstrate that a 24-hour-long neonatal treatment with a clinically relevant combination of antiseizure medications can have long-lasting effects on behavior and cognition in nonhuman primates. ANN NEUROL 2023.

3.
Genome Res ; 33(4): 541-556, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37100461

RESUMO

In vitro studies indicate the neurodevelopmental disorder gene myelin transcription factor 1-like (MYT1L) suppresses non-neuronal lineage genes during fibroblast-to-neuron direct differentiation. However, MYT1L's molecular and cellular functions in the adult mammalian brain have not been fully characterized. Here, we found that MYT1L loss leads to up-regulated deep layer (DL) gene expression, corresponding to an increased ratio of DL/UL neurons in the adult mouse cortex. To define potential mechanisms, we conducted Cleavage Under Targets & Release Using Nuclease (CUT&RUN) to map MYT1L binding targets and epigenetic changes following MYT1L loss in mouse developing cortex and adult prefrontal cortex (PFC). We found MYT1L mainly binds to open chromatin, but with different transcription factor co-occupancies between promoters and enhancers. Likewise, multiomic data set integration revealed that, at promoters, MYT1L loss does not change chromatin accessibility but increases H3K4me3 and H3K27ac, activating both a subset of earlier neuronal development genes as well as Bcl11b, a key regulator for DL neuron development. Meanwhile, we discovered that MYT1L normally represses the activity of neurogenic enhancers associated with neuronal migration and neuronal projection development by closing chromatin structures and promoting removal of active histone marks. Further, we showed that MYT1L interacts with HDAC2 and transcriptional repressor SIN3B in vivo, providing potential mechanisms underlying repressive effects on histone acetylation and gene expression. Overall, our findings provide a comprehensive map of MYT1L binding in vivo and mechanistic insights into how MYT1L loss leads to aberrant activation of earlier neuronal development programs in the adult mouse brain.


Assuntos
Cromatina , Fatores de Transcrição , Animais , Camundongos , Encéfalo/metabolismo , Cromatina/genética , Cromatina/metabolismo , Mamíferos/genética , Neurônios/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
4.
PLoS Pathog ; 19(3): e1011282, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36976812

RESUMO

In the 2016 Zika virus (ZIKV) pandemic, a previously unrecognized risk of birth defects surfaced in babies whose mothers were infected with Asian-lineage ZIKV during pregnancy. Less is known about the impacts of gestational African-lineage ZIKV infections. Given high human immunodeficiency virus (HIV) burdens in regions where African-lineage ZIKV circulates, we evaluated whether pregnant rhesus macaques infected with simian immunodeficiency virus (SIV) have a higher risk of African-lineage ZIKV-associated birth defects. Remarkably, in both SIV+ and SIV- animals, ZIKV infection early in the first trimester caused a high incidence (78%) of spontaneous pregnancy loss within 20 days. These findings suggest a significant risk for early pregnancy loss associated with African-lineage ZIKV infection and provide the first consistent ZIKV-associated phenotype in macaques for testing medical countermeasures.


Assuntos
Aborto Espontâneo , Complicações Infecciosas na Gravidez , Vírus da Imunodeficiência Símia , Infecção por Zika virus , Zika virus , Gravidez , Feminino , Animais , Humanos , Zika virus/genética , Macaca mulatta , Primeiro Trimestre da Gravidez
5.
PLoS Negl Trop Dis ; 16(8): e0010623, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35926066

RESUMO

Countermeasures against Zika virus (ZIKV), including vaccines, are frequently tested in nonhuman primates (NHP). Macaque models are important for understanding how ZIKV infections impact human pregnancy due to similarities in placental development. The lack of consistent adverse pregnancy outcomes in ZIKV-affected pregnancies poses a challenge in macaque studies where group sizes are often small (4-8 animals). Studies in small animal models suggest that African-lineage Zika viruses can cause more frequent and severe fetal outcomes. No adverse outcomes were observed in macaques exposed to 1x104 PFU (low dose) of African-lineage ZIKV at gestational day (GD) 45. Here, we exposed eight pregnant rhesus macaques to 1x108 PFU (high dose) of African-lineage ZIKV at GD 45 to test the hypothesis that adverse pregnancy outcomes are dose-dependent. Three of eight pregnancies ended prematurely with fetal death. ZIKV was detected in both fetal and placental tissues from all cases of early fetal loss. Further refinements of this exposure system (e.g., varying the dose and timing of infection) could lead to an even more consistent, unambiguous fetal loss phenotype for assessing ZIKV countermeasures in pregnancy. These data demonstrate that high-dose exposure to African-lineage ZIKV causes pregnancy loss in macaques and also suggest that ZIKV-induced first trimester pregnancy loss could be strain-specific.


Assuntos
Complicações Infecciosas na Gravidez , Infecção por Zika virus , Zika virus , Animais , Modelos Animais de Doenças , Feminino , Humanos , Macaca mulatta , Placenta , Gravidez , Resultado da Gravidez , Zika virus/genética
6.
Neurobiol Dis ; 171: 105814, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35817217

RESUMO

Barbiturates and benzodiazepines are GABAA-receptor agonists and potent antiseizure medications. We reported that exposure of neonatal macaques to combination of phenobarbital and midazolam (Pb/M) for 24 h, at clinically relevant doses and plasma levels, causes widespread apoptosis affecting neurons and oligodendrocytes. Notably, the extent of injury was markedly more severe compared to shorter (8 h) exposure to these drugs. We also reported that, in the infant macaque, mild hypothermia ameliorates the apoptosis response to the anesthetic sevoflurane. These findings prompted us explore whether mild hypothermia might protect infant nonhuman primates from neuro- and gliotoxicity of Pb/M. Since human infants with seizures may receive combinations of benzodiazepines and barbiturates for days, we opted for 24 h treatment with Pb/M. Neonatal rhesus monkeys received phenobarbital intravenously, followed by midazolam infusion over 24 h under normothermia (T > 36.5 °C-37.5 °C; n = 4) or mild hypothermia (T = 35 °C-36.5 °C; n = 5). Medication doses and blood levels measured were comparable to those in human infants. Animals were euthanized at 36 h and brains examined immunohistochemically and stereologically. Treatment was well tolerated. Extensive degeneration of neurons and oligodendrocytes was seen at 36 h in both groups within neocortex, basal ganglia, hippocampus and brainstem. Mild hypothermia over 36 h (maintained until terminal perfusion) conferred no protection against the neurotoxic and gliotoxic effects of Pb/M. This is in marked contrast to our previous findings that mild hypothermia is protective in the context of a 5 h-long exposure to sevoflurane in infant macaques. These findings demonstrate that brain injury caused by prolonged exposure to Pb/M in the neonatal primate cannot be ameliorated by mild hypothermia.


Assuntos
Lesões Encefálicas , Hipotermia Induzida , Hipotermia , Animais , Encéfalo , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/prevenção & controle , Humanos , Lactente , Recém-Nascido , Chumbo/farmacologia , Macaca mulatta , Midazolam/farmacologia , Fenobarbital/toxicidade , Sevoflurano/farmacologia
7.
J Virol ; 95(21): e0081821, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34379510

RESUMO

Zika virus (ZIKV) is a flavivirus that causes a constellation of adverse fetal outcomes collectively termed congenital Zika syndrome (CZS). However, not all pregnancies exposed to ZIKV result in an infant with apparent defects. During the 2015 to 2016 American outbreak of ZIKV, CZS rates varied by geographic location. The underlying mechanisms responsible for this heterogeneity in outcomes have not been well defined. Therefore, we sought to characterize and compare the pathogenic potential of multiple Asian-/American-lineage ZIKV strains in an established Ifnar1-/- pregnant mouse model. Here, we show significant differences in the rate of fetal demise following maternal inoculation with ZIKV strains from Puerto Rico, Panama, Mexico, Brazil, and Cambodia. Rates of fetal demise broadly correlated with maternal viremia but were independent of fetus and placenta virus titer, indicating that additional underlying factors contribute to fetal outcome. Our results, in concert with those from other studies, suggest that subtle differences in ZIKV strains may have important phenotypic impacts. With ZIKV now endemic in the Americas, greater emphasis needs to be placed on elucidating and understanding the underlying mechanisms that contribute to fetal outcome. IMPORTANCE Zika virus (ZIKV) transmission has been reported in 87 countries and territories around the globe. ZIKV infection during pregnancy is associated with adverse fetal outcomes, including birth defects, microcephaly, neurological complications, and even spontaneous abortion. Rates of adverse fetal outcomes vary between regions, and not every pregnancy exposed to ZIKV results in birth defects. Not much is known about how or if the infecting ZIKV strain is linked to fetal outcomes. Our research provides evidence of phenotypic heterogeneity between Asian-/American-lineage ZIKV strains and provides insight into the underlying causes of adverse fetal outcomes. Understanding ZIKV strain-dependent pathogenic potential during pregnancy and elucidating underlying causes of diverse clinical sequelae observed during human infections is critical to understanding ZIKV on a global scale.


Assuntos
Feto/patologia , Complicações Infecciosas na Gravidez/virologia , Receptor de Interferon alfa e beta/genética , Infecção por Zika virus/imunologia , Animais , Modelos Animais de Doenças , Feminino , Feto/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placenta/virologia , Gravidez , Complicações Infecciosas na Gravidez/imunologia , Infecção por Zika virus/congênito
8.
J Lipid Res ; 62: 100079, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33894211

RESUMO

Vascular disease contributes to neurodegeneration, which is associated with decreased blood pressure in older humans. Plasmalogens, ether phospholipids produced by peroxisomes, are decreased in Alzheimer's disease, Parkinson's disease, and other neurodegenerative disorders. However, the mechanistic links between ether phospholipids, blood pressure, and neurodegeneration are not fully understood. Here, we show that endothelium-derived ether phospholipids affect blood pressure, behavior, and neurodegeneration in mice. In young adult mice, inducible endothelial-specific disruption of PexRAP, a peroxisomal enzyme required for ether lipid synthesis, unexpectedly decreased circulating plasmalogens. PexRAP endothelial knockout (PEKO) mice responded normally to hindlimb ischemia but had lower blood pressure and increased plasma renin activity. In PEKO as compared with control mice, tyrosine hydroxylase was decreased in the locus coeruleus, which maintains blood pressure and arousal. PEKO mice moved less, slept more, and had impaired attention to and recall of environmental events as well as mild spatial memory deficits. In PEKO hippocampus, gliosis was increased, and a plasmalogen associated with memory was decreased. Despite lower blood pressure, PEKO mice had generally normal homotopic functional connectivity by optical neuroimaging of the cerebral cortex. Decreased glycogen synthase kinase-3 phosphorylation, a marker of neurodegeneration, was detected in PEKO cerebral cortex. In a co-culture system, PexRAP knockdown in brain endothelial cells decreased glycogen synthase kinase-3 phosphorylation in co-cultured astrocytes that was rescued by incubation with the ether lipid alkylglycerol. Taken together, our findings suggest that endothelium-derived ether lipids mediate several biological processes and may also confer neuroprotection in mice.


Assuntos
Pressão Sanguínea
9.
Neurobiol Dis ; 149: 105245, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33385515

RESUMO

Barbiturates and benzodiazepines are potent GABAA receptor agonists and strong anticonvulsants. In the developing brain they can cause neuronal and oligodendroglia apoptosis, impair synaptogenesis, inhibit neurogenesis and trigger long-term neurocognitive sequelae. In humans, the vulnerable period is projected to extend from the third trimester of pregnancy to the third year of life. Infants with seizures and epilepsies may receive barbiturates, benzodiazepines and their combinations for days, months or years. How exposure duration affects neuropathological sequelae is unknown. Here we investigated toxicity of phenobarbital/midazolam (Pb/M) combination in the developing nonhuman primate brain. Neonatal rhesus monkeys received phenobarbital intravenously, followed by infusion of midazolam over 5 (n = 4) or 24 h (n = 4). Animals were euthanized at 8 or 36 h and brains examined immunohistochemically and stereologically. Treatment was well tolerated, physiological parameters remained at optimal levels. Compared to naïve controls, Pb/M exposed brains displayed widespread apoptosis affecting neurons and oligodendrocytes. Pattern and severity of cell death differed depending on treatment-duration, with more extensive neurodegeneration following longer exposure. At 36 h, areas of the brain not affected at 8 h displayed neuronal apoptosis, while oligodendroglia death was most prominent at 8 h. A notable feature at 36 h was degeneration of neuronal tracts and trans-neuronal death of neurons, presumably following their disconnection from degenerated presynaptic partners. These findings demonstrate that brain toxicity of Pb/M in the neonatal primate brain becomes more severe with longer exposures and expands trans-synaptically. Impact of these sequelae on neurocognitive outcomes and the brain connectome will need to be explored.


Assuntos
Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/toxicidade , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Animais , Animais Recém-Nascidos , Esquema de Medicação , Macaca mulatta
10.
Ultrasound Med Biol ; 46(8): 2044-2056, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32475715

RESUMO

Studies in animal models have revealed that long exposures to anesthetics can induce apoptosis in the newborn and young developing brain. These effects have not been confirmed in humans because of the lack of a non-invasive, practical in vivo imaging tool with the ability to detect these changes. Following the successful use of ultrasound backscatter spectroscopy (UBS) to monitor in vivo cell death in breast tumors, we aimed to use UBS to assess the neurotoxicity of the anesthetic sevoflurane (SEVO) in a non-human primate (NHP) model. Sixteen 2- to 7-day-old rhesus macaques were exposed for 5 h to SEVO. Ultrasound scanning was done with a phased array transducer on a clinical ultrasound scanner operated at 10 MHz. Data consisting of 10-15 frames of radiofrequency (RF) echo signals from coronal views of the thalamus were obtained 0.5 and 6.0 h after initiating exposure. The UBS parameter "effective scatterer size" (ESS) was estimated by fitting a scattering form factor (FF) model to the FF measured from RF echo signals. The approach involved analyzing the frequency dependence of the measured FF to characterize scattering sources and selecting the FF model based on a χ2 goodness-of-fit criterion. To assess data quality, a rigorous acceptance criterion based on the analysis of prevalence of diffuse scattering (an assumption in the estimation of ESS) was established. ESS changes after exposure to SEVO were compared with changes in a control group of five primates for which ultrasound data were acquired at 0 and 10 min (no apoptosis expected). Over the entire data set, the average measured FF at 0.5 and 6.0 h monotonically decreased with frequency, justifying fitting a single FF over the analysis bandwidth. χ2 values of a (inhomogeneous continuum) Gaussian FF model were one-fifth those of the discrete fluid sphere model, suggesting that a continuum scatterer model better represents ultrasound scattering in the young rhesus brain. After application of the data quality criterion, only 5 of 16 subjects from the apoptotic group and 5 of 5 subjects from the control group fulfilled the acceptance criteria. All subjects in the apoptotic group that passed the acceptance criterion exhibited a significant ESS reduction at 6.0 h. These changes (-6.4%, 95% Interquartile Range: -14.3% to -3.3%) were larger than those in the control group (-0.8%, 95% Interquartile Range: -2.0% to 1.5%]). Data with a low prevalence of diffuse scattering corresponded to possibly biased results. Thus, ESS has the potential to detect changes in brain microstructure related to anesthesia-induced apoptosis.


Assuntos
Anestésicos/efeitos adversos , Análise Espectral/métodos , Tálamo/efeitos dos fármacos , Ultrassonografia/métodos , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Macaca mulatta , Sevoflurano/efeitos adversos
11.
J Neurosci ; 40(5): 1145-1161, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31836659

RESUMO

Zika virus (ZIKV) infection during pregnancy has been causally linked to a constellation of neurodevelopmental deformities in the fetus resulting in a disease termed congenital Zika syndrome (CZS). Here we detail how ZIKV infection produces extensive neuropathology in the developing mouse brain and spinal cord of both sexes. Surprisingly, neuropathology differs depending on viral strain with a French Polynesian isolate producing primarily excitotoxicity and a Brazilian isolate being almost exclusively apoptotic but occurring over a prolonged period that is more likely to produce severe hypoplasia. We also show exposure can produce a characteristic pattern of infection that mirrors neuropathology and ultimately results in gross morphological deformities strikingly similar to CZS. This research provides a valuable mouse model mirroring the clinical course of disease that can be used to test potential therapies to improve treatment and gain a better understanding of the disabilities associated with CZS.SIGNIFICANCE STATEMENT Zika virus (ZIKV) infection during pregnancy has been causally linked to a constellation of neurodevelopmental deformities in the fetus resulting in a disease termed congenital Zika syndrome. Despite its devastating effects, very little is known about how ZIKV infection produces fetal neuropathology. Here we detail the temporal progression of ZIKV infection in the mouse brain and spinal cord resulting in massive neurodegeneration of infected regions. We also report a ZIKV strain from a region of Brazil with high levels of microcephaly (abnormally small head circumference) produces particularly devastating neuropathology.


Assuntos
Encéfalo/virologia , Neurônios/virologia , Medula Espinal/virologia , Infecção por Zika virus/patologia , Infecção por Zika virus/virologia , Animais , Animais Recém-Nascidos , Apoptose , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Neurônios/patologia , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/patologia , Zika virus/patogenicidade
12.
Neurobiol Dis ; 130: 104489, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31175984

RESUMO

Sedatives and anesthetics can injure the developing brain. They cause apoptosis of neurons and oligodendrocytes, impair synaptic plasticity, inhibit neurogenesis and trigger long-term neurocognitive deficits. The projected vulnerable period in humans extends from the third trimester of pregnancy to the third year of life. Despite all concerns, there is no ethically and medically acceptable alternative to the use of sedatives and anesthetics for surgeries and painful interventions. Development of measures that prevent injury while allowing the medications to exert their desired actions has enormous translational value. Here we investigated protective potential of hypothermia against histological toxicity of the anesthetic sevoflurane in the developing nonhuman primate brain. Neonatal rhesus monkeys underwent sevoflurane anesthesia over 5 h. Body temperature was regulated in the normothermic (>36.5 °C), mild hypothermic (35-36.5 °C) and moderately hypothermic (<35 °C) range. Animals were euthanized at 8 h and brains examined immunohistochemically (activated caspase 3) and stereologically to quantify apoptotic neuronal and oligodendroglial death. Sevoflurane anesthesia was well tolerated at all temperatures, with oxygen saturations, end tidal CO2 and blood gases remaining at optimal levels. Compared to controls, sevoflurane exposed brains displayed significant apoptosis in gray and white matter affecting neurons and oligodendrocytes. Mild hypothermia (35-36.5 °C) conferred significant protection from apoptotic brain injury, whereas moderate hypothermia (<35 °C) did not. Hypothermia ameliorates anesthesia-induced apoptosis in the neonatal primate brain within a narrow temperature window (35-36.5 °C). Protection is lost at temperatures below 35 °C. Given the mild degree of cooling needed to achieve significant brain protection, application of our findings to humans should be explored further.


Assuntos
Anestésicos Inalatórios/toxicidade , Encéfalo/patologia , Hipotermia Induzida/métodos , Sevoflurano/toxicidade , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Macaca mulatta , Neurônios/efeitos dos fármacos , Neurônios/patologia
13.
Neurobiol Dis ; 127: 554-562, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30951850

RESUMO

Apoptosis is triggered in the developing mammalian brain by sedative, anesthetic or antiepileptic drugs during late gestation and early life. Whether human children are vulnerable to this toxicity mechanism remains unknown, as there are no imaging techniques to capture it. Apoptosis is characterized by distinct structural features, which affect the way damaged tissue scatters ultrasound compared to healthy tissue. We evaluated whether apoptosis, triggered by the anesthetic sevoflurane in the brains of neonatal rhesus macaques, can be detected using quantitative ultrasound (QUS). Neonatal (n = 15) rhesus macaques underwent 5 h of sevoflurane anesthesia. QUS images were obtained through the sagittal suture at 0.5 and 6 h. Brains were collected at 8 h and examined immunohistochemically to analyze apoptotic neuronal and oligodendroglial death. Significant apoptosis was detected in white and gray matter throughout the brain, including the thalamus. We measured a change in the effective scatterer size (ESS), a QUS biomarker derived from ultrasound echo signals obtained with clinical scanners, after sevoflurane-anesthesia in the thalamus. Although initial inclusion of all measurements did not reveal a significant correlation, when outliers were excluded, the change in the ESS between the pre- and post-anesthesia measurements correlated strongly and proportionally with the severity of apoptotic death. We report for the first time in vivo changes in QUS parameters, which may reflect severity of apoptosis in the brains of infant nonhuman primates. These findings suggest that QUS may enable in vivo studies of apoptosis in the brains of human infants following exposure to anesthetics, antiepileptics and other brain injury mechanisms.


Assuntos
Apoptose/fisiologia , Encéfalo/diagnóstico por imagem , Sevoflurano/farmacologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Feminino , Macaca mulatta , Masculino , Neurônios/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Ultrassonografia
14.
Neurobiol Learn Mem ; 165: 106834, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-29550366

RESUMO

Fifteen years ago Olney and colleagues began using animal models to evaluate the effects of anesthetic and sedative agents (ASAs) on neurodevelopment. The results from ongoing studies indicate that, under certain conditions, exposure to these drugs during development induces an acute elevated apoptotic neurodegenerative response in the brain and long-term functional impairments. These animal models have played a significant role in bringing attention to the possible adverse effects of exposing the developing brain to ASAs when few concerns had been raised previously in the medical community. The apoptotic degenerative response resulting from neonatal exposure to ASAs has been replicated in many studies in both rodents and non-human primates, suggesting that a similar effect may occur in humans. In both rodents and non-human primates, significantly increased levels of apoptotic degeneration are often associated with functional impairments later in life. However, behavioral deficits following developmental ASA exposure have not been consistently reported even when significantly elevated levels of apoptotic degeneration have been documented in animal models. In the present work, we review this literature and propose a rodent model for assessing potential functional deficits following neonatal ASA exposure with special reference to experimental design and procedural issues. Our intent is to improve test sensitivity and replicability for detecting subtle behavioral effects, and thus enhance the translational significance of ASA models.


Assuntos
Anestesia/efeitos adversos , Transtornos do Neurodesenvolvimento/induzido quimicamente , Anestésicos/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças
15.
Sci Rep ; 8(1): 5302, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593226

RESUMO

Caffeine is the most frequently used medication in premature infants. It is the respiratory stimulant of choice for apnea associated with prematurity and has been called the silver bullet in neonatology because of many proven benefits and few known risks. Research has revealed that sedative/anesthetic drugs trigger apoptotic death of neurons and oligodendrocytes in developing mammalian brains. Here we evaluated the influence of caffeine on the neurotoxicity of anesthesia in developing nonhuman primate brains. Fetal macaques (n = 7-8/group), at a neurodevelopmental age comparable to premature human infants, were exposed in utero for 5 hours to no drug (control), isoflurane, or isoflurane + caffeine and examined for evidence of apoptosis. Isoflurane exposure increased apoptosis 3.3 fold for neurons and 3.4 fold for oligodendrocytes compared to control brains. Isoflurane + caffeine caused neuronal apoptosis to increase 8.0 fold compared to control levels but did not augment oligoapoptosis. Neuronal death was particularly pronounced in the basal ganglia and cerebellum. Higher blood levels of caffeine within the range considered therapeutic and safe for human infants correlated with increased neuroapoptosis. Caffeine markedly augments neurotoxicity of isoflurane in the fetal macaque brain and challenges the assumption that caffeine is safe for premature infants.


Assuntos
Cafeína/efeitos adversos , Desenvolvimento Fetal/efeitos dos fármacos , Isoflurano/efeitos adversos , Anestesia/efeitos adversos , Anestésicos Inalatórios/efeitos adversos , Anestésicos Inalatórios/farmacologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cafeína/farmacologia , Morte Celular/efeitos dos fármacos , Feminino , Isoflurano/farmacologia , Macaca mulatta/embriologia , Masculino , Neurônios/fisiologia , Oligodendroglia/efeitos dos fármacos , Gravidez
16.
Pediatr Res ; 83(6): 1200-1206, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29584714

RESUMO

BackgroundPelizaeus Merzbacher disease (PMD) is a dysmyelinating disorder of the central nervous system caused by impaired differentiation of oligodendrocytes. This study was prompted by findings that antimuscarinic compounds enhance oligodendrocyte differentiation and remyelination in vitro. One of these compounds, clemastine fumarate, is licensed for treatment of allergic conditions. We tested whether clemastine fumarate can promote myelination in two rodent PMD models, the myelin-deficient and the PLP transgenic rat.MethodsPups were treated with daily injections of clemastine (10-30 mg/kg/day) on postnatal days 1-21. Neurologic phenotypes and myelination patterns in the brain, optic nerves, and spinal cords were assessed using histological techniques.ResultsNo changes in neurological phenotype or survival were observed even at the highest dose of clemastine. Postmortem staining with Luxol fast blue and myelin basic protein immunohistochemistry revealed no evidence for improved myelination in the CNS of treated rats compared to vehicle-treated littermates. Populations of mature oligodendrocytes were unaffected by the treatment.ConclusionThese results demonstrate lack of therapeutic effect of clemastine in two rat PMD models. Both models have rapid disease progression consistent with the connatal form of the disease. Further studies are necessary to determine whether clemastine bears a therapeutic potential in milder forms of PMD.


Assuntos
Doenças do Sistema Nervoso Central/metabolismo , Clemastina/administração & dosagem , Doenças Desmielinizantes/metabolismo , Bainha de Mielina/química , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos , Barreira Hematoencefálica , Encéfalo/embriologia , Diferenciação Celular , Sistema Nervoso Central/efeitos dos fármacos , Modelos Animais de Doenças , Genótipo , Injeções Subcutâneas , Masculino , Proteína Básica da Mielina/metabolismo , Oligodendroglia/metabolismo , Nervo Óptico/metabolismo , Fenótipo , Ratos , Medula Espinal/metabolismo
17.
Neurotoxicol Teratol ; 60: 63-68, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27876652

RESUMO

Previously we reported that a 5-hour exposure of 6-day-old (P6) rhesus macaques to isoflurane triggers robust neuron and oligodendrocyte apoptosis. In an attempt to further describe the window of vulnerability to anesthetic neurotoxicity, we exposed P20 and P40 rhesus macaques to 5h of isoflurane anesthesia or no exposure (control animals). Brains were collected 3h later and examined immunohistochemically to analyze neuronal and glial apoptosis. Brains exposed to isoflurane displayed neuron and oligodendrocyte apoptosis distributed throughout cortex and white matter, respectively. When combining the two age groups (P20+P40), the animals exposed to isoflurane had 3.6 times as many apoptotic cells as the control animals. In the isoflurane group, approximately 66% of the apoptotic cells were oligodendrocytes and 34% were neurons. In comparison, in our previous studies on P6 rhesus macaques, approximately 52% of the dying cells were glia and 48% were neurons. In conclusion, the present data suggest that the window of vulnerability for neurons is beginning to close in the P20 and P40 rhesus macaques, but continuing for oligodendrocytes.


Assuntos
Envelhecimento/fisiologia , Apoptose/fisiologia , Encéfalo/fisiologia , Isoflurano/efeitos adversos , Neurônios/fisiologia , Oligodendroglia/fisiologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Feminino , Macaca mulatta , Masculino
18.
Cell Rep ; 16(12): 3208-3218, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27612415

RESUMO

Zika virus (ZIKV) is an emerging flavivirus that causes congenital abnormalities and Guillain-Barré syndrome. ZIKV infection also results in severe eye disease characterized by optic neuritis, chorioretinal atrophy, and blindness in newborns and conjunctivitis and uveitis in adults. We evaluated ZIKV infection of the eye by using recently developed mouse models of pathogenesis. ZIKV-inoculated mice developed conjunctivitis, panuveitis, and infection of the cornea, iris, optic nerve, and ganglion and bipolar cells in the retina. This phenotype was independent of the entry receptors Axl or Mertk, given that Axl(-/-), Mertk(-/-), and Axl(-/-)Mertk(-/-) double knockout mice sustained levels of infection similar to those of control animals. We also detected abundant viral RNA in tears, suggesting that virus might be secreted from lacrimal glands or shed from the cornea. This model provides a foundation for studying ZIKV-induced ocular disease, defining mechanisms of viral persistence, and developing therapeutic approaches for viral infections of the eye.


Assuntos
Pan-Uveíte/virologia , Lágrimas/virologia , Eliminação de Partículas Virais/fisiologia , Infecção por Zika virus/virologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas/deficiência , Receptores Proteína Tirosina Quinases/deficiência , c-Mer Tirosina Quinase/deficiência , Receptor Tirosina Quinase Axl
19.
Cell ; 165(5): 1081-1091, 2016 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-27180225

RESUMO

Zika virus (ZIKV) infection in pregnant women causes intrauterine growth restriction, spontaneous abortion, and microcephaly. Here, we describe two mouse models of placental and fetal disease associated with in utero transmission of ZIKV. Female mice lacking type I interferon signaling (Ifnar1(-/-)) crossed to wild-type (WT) males produced heterozygous fetuses resembling the immune status of human fetuses. Maternal inoculation at embryonic day 6.5 (E6.5) or E7.5 resulted in fetal demise that was associated with ZIKV infection of the placenta and fetal brain. We identified ZIKV within trophoblasts of the maternal and fetal placenta, consistent with a trans-placental infection route. Antibody blockade of Ifnar1 signaling in WT pregnant mice enhanced ZIKV trans-placental infection although it did not result in fetal death. These models will facilitate the study of ZIKV pathogenesis, in utero transmission, and testing of therapies and vaccines to prevent congenital malformations.


Assuntos
Modelos Animais de Doenças , Doenças Fetais/virologia , Doenças Placentárias/virologia , Complicações Infecciosas na Gravidez/virologia , Infecção por Zika virus/patologia , Zika virus/fisiologia , Animais , Apoptose , Encéfalo/embriologia , Encéfalo/patologia , Encéfalo/virologia , Feminino , Doenças Fetais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Placentárias/patologia , Gravidez , Complicações Infecciosas na Gravidez/patologia , RNA Viral/isolamento & purificação , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Infecção por Zika virus/virologia
20.
Sci Rep ; 6: 22427, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26951756

RESUMO

Exposure of infant animals, including non-human primates (NHPs), to anaesthetic drugs causes apoptotic death of neurons and oligodendrocytes (oligos) and results in long-term neurodevelopmental impairment (NDI). Moreover, retrospective clinical studies document an association between anaesthesia exposure of human infants and significant increase in NDI. These findings pose a potentially serious dilemma because millions of human infants are exposed to anaesthetic drugs every year as part of routine medical care. Lithium (Li) at clinically established doses is neuroprotective in various cerebral injury models. We therefore investigated whether Li also protects against anaesthesia neurotoxicity in infant NHPs. On postnatal day 6 NHPs were anaesthetized with the widely used anaesthetic isoflurane (ISO) for 5 h employing the same standards as in a human pediatric surgery setting. Co-administration of Li completely prevented the acute ISO-induced neuroapoptosis and significantly reduced ISO-induced apoptosis of oligodendroglia. Our findings are highly encouraging as they suggest that a relatively simple pharmacological manipulation might protect the developing primate brain against the neurotoxic action of anaesthetic drugs while not interfering with the beneficial actions of these drugs. Further research is needed to determine Li's potential to prevent long-term NDI resulting from ISO anaesthesia, and to establish its safety in human infants.


Assuntos
Anestésicos Inalatórios/toxicidade , Apoptose/efeitos dos fármacos , Isoflurano/toxicidade , Lítio/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Lítio/farmacocinética , Macaca mulatta , Transtornos do Neurodesenvolvimento/induzido quimicamente , Neurônios/efeitos dos fármacos , Neurônios/patologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...