Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biochem Parasitol ; 238: 111283, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32564978

RESUMO

Posaconazole (POS) is an inhibitor of ergosterol biosynthesis in clinical use for treating invasive fungal infections. POS has potent and selective anti-Trypanosoma cruzi activity and has been evaluated as a possible treatment for Chagas disease. Microtissues are a 3D culture system that has been shown to reproduce better tissue architecture and functionality than cell cultures in monolayer (2D). It has been used to evaluate chemotropic response as in vitro disease models. We previously developed an in vitro model that reproduces aspects of cardiac fibrosis observed in Chagas cardiomyopathy, using microtissues formed by primary cardiac cells infected by the T. cruzi, here called T. cruzi fibrotic cardiac microtissue (TCFCM). We also showed that the treatment of TCFCM with a TGF-ß pathway inhibitor reduces fibrosis. Here, we aimed to evaluate the effect of POS in TCFCM, observing parasite load and molecules involved in fibrosis. To choose the concentration of POS to be used in TCFCM we first performed experiments in a monolayer of primary cardiac cell cultures and, based on the results, TCFCM was treated with 5 nM of POS for 96 h, starting at 144 h post-infection. Our previous studies showed that at this time the TCFCM had established fibrosis, resulting from T. cruzi infection. Treatment with POS of TCFCM reduced 50 % of parasite load as observed by real-time PCR and reduced markedly the fibrosis as observed by western blot and immunofluorescence, associated with a strong reduction in the expression of fibronectin and laminin (45 % and 54 %, respectively). POS treatment also changed the expression of proteins involved in the regulation of extracellular matrix proteins (TGF-ß and TIMP-4, increased by 50 % and decreased by 58 %, respectively) in TCFCM. In conclusion, POS presented a potent trypanocidal effect both in 2D and in TCFCM, and the reduction of the parasite load was associated with a reduction of fibrosis in the absence of external immunological effectors.


Assuntos
Cardiomiopatia Chagásica/tratamento farmacológico , Fibrose Endomiocárdica/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Triazóis/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Técnicas de Cultura de Células , Cardiomiopatia Chagásica/genética , Cardiomiopatia Chagásica/parasitologia , Cardiomiopatia Chagásica/patologia , Fibrose Endomiocárdica/genética , Fibrose Endomiocárdica/parasitologia , Fibrose Endomiocárdica/patologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feto , Fibronectinas/genética , Fibronectinas/metabolismo , Regulação da Expressão Gênica , Humanos , Concentração Inibidora 50 , Laminina/genética , Laminina/metabolismo , Camundongos , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/parasitologia , Carga Parasitária , Cultura Primária de Células , Inibidores Teciduais de Metaloproteinases/genética , Inibidores Teciduais de Metaloproteinases/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/patogenicidade , Inibidor Tecidual 4 de Metaloproteinase
2.
PLoS Negl Trop Dis ; 11(12): e0006132, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29281643

RESUMO

BACKGROUND: Chagas disease, caused by the protozoan Trypanosoma cruzi, is the leading cause of heart failure in Latin America. The clinical treatment of Chagas disease is limited to two 60 year-old drugs, nifurtimox and benznidazole, that have variable efficacy against different strains of the parasite and may lead to severe side effects. CYP51 is an enzyme in the sterol biosynthesis pathway that has been exploited for the development of therapeutics for fungal and parasitic infections. In a target-based drug discovery program guided by x-ray crystallography, we identified the 4-aminopyridyl-based series of CYP51 inhibitors as being efficacious versus T.cruzi in vitro; two of the most potent leads, 9 and 12, have now been evaluated for toxicity and efficacy in mice. METHODOLOGY/PRINCIPAL FINDINGS: Both acute and chronic animal models infected with wild type or transgenic T. cruzi strains were evaluated. There was no evidence of toxicity in the 28-day dosing study of uninfected animals, as judged by the monitoring of multiple serum and histological parameters. In two acute models of Chagas disease, 9 and 12 drastically reduced parasitemia, increased survival of mice, and prevented liver and heart injury. None of the compounds produced long term sterile cure. In the less severe acute model using the transgenic CL-Brenner strain of T.cruzi, parasitemia relapsed upon drug withdrawal. In the chronic model, parasitemia fell to a background level and, as evidenced by the bioluminescence detection of T. cruzi expressing the red-shifted luciferase marker, mice remained negative for 4 weeks after drug withdrawal. Two immunosuppression cycles with cyclophosphamide were required to re-activate the parasites. Although no sterile cure was achieved, the suppression of parasitemia in acutely infected mice resulted in drastically reduced inflammation in the heart. CONCLUSIONS/SIGNIFICANCE: The positive outcomes achieved in the absence of sterile cure suggest that the target product profile in anti-Chagasic drug discovery should be revised in favor of safe re-administration of the medication during the lifespan of a Chagas disease patient. A medication that reduces parasite burden may halt or slow progression of cardiomyopathy and therefore improve both life expectancy and quality of life.


Assuntos
Inibidores de 14-alfa Desmetilase/uso terapêutico , Doença de Chagas/tratamento farmacológico , Parasitemia/tratamento farmacológico , Pirimidinas/uso terapêutico , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos , Inibidores de 14-alfa Desmetilase/efeitos adversos , Animais , Doença de Chagas/parasitologia , Modelos Animais de Doenças , Descoberta de Drogas , Feminino , Coração/efeitos dos fármacos , Chumbo/química , Chumbo/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Miocárdio/patologia , Parasitemia/parasitologia , Pirimidinas/efeitos adversos , Esterol 14-Desmetilase/metabolismo , Esteróis/biossíntese , Tripanossomicidas/efeitos adversos
3.
Parasitology ; 143(5): 568-75, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26928468

RESUMO

Ocular toxoplasmosis is the most frequent cause of uveitis, leading to partial or total loss of vision, with the retina the main affected structure. The cells of the retinal pigment epithelium (RPE) play an important role in the physiology of the retina and formation of the blood-retinal barrier. Several pathogens induce barrier dysfunction by altering tight junction (TJ) integrity. Here, we analysed the effect of infection by Toxoplasma gondii on TJ integrity in ARPE-19 cells. Loss of TJ integrity was demonstrated in T. gondii-infected ARPE-19 cells, causing increase in paracellular permeability and disturbance of the barrier function of the RPE. Confocal microscopy also revealed alteration in the TJ protein occludin induced by T. gondii infection. Disruption of junctional complex was also evidenced by scanning and transmission electron microscopy. Cell-cell contact loss was noticed in the early stages of infection by T. gondii with the visualization of small to moderate intercellular spaces. Large gaps were mostly observed with the progression of the infection. Thus, our data suggest that the alterations induced by T. gondii in the structural organization of the RPE may contribute to retinal injury evidenced by ocular toxoplasmosis.


Assuntos
Barreira Hematorretiniana/fisiologia , Epitélio Pigmentado da Retina/parasitologia , Junções Íntimas/fisiologia , Toxoplasma/fisiologia , Toxoplasmose Ocular/fisiopatologia , Animais , Barreira Hematorretiniana/ultraestrutura , Células Cultivadas , Impedância Elétrica , Feminino , Humanos , Camundongos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Epitélio Pigmentado da Retina/fisiopatologia , Epitélio Pigmentado da Retina/ultraestrutura , Junções Íntimas/ultraestrutura , Toxoplasma/ultraestrutura , Toxoplasmose Ocular/patologia
4.
Exp Parasitol ; 139: 49-57, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24582948

RESUMO

The activation of signaling pathways involving protein tyrosine kinases (PTKs) has been demonstrated during Trypanosoma cruzi invasion. Herein, we describe the participation of FAK/Src in the invasion of cardiomyocytes by T. cruzi. The treatment of cardiomyocytes with genistein, a PTK inhibitor, significantly reduced T. cruzi invasion. Also, PP1, a potent Src-family protein inhibitor, and PF573228, a specific FAK inhibitor, also inhibited T. cruzi entry; maximal inhibition was achieved at concentrations of 25µM PP1 (53% inhibition) and 40µM PF573228 (50% inhibition). The suppression of FAK expression in siRNA-treated cells and tetracycline-uninduced Tet-FAK(WT)-46 cells significantly reduced T. cruzi invasion. The entry of T. cruzi is accompanied by changes in FAK and c-Src expression and phosphorylation. An enhancement of FAK activation occurs during the initial stages of T. cruzi-cardiomyocyte interaction (30 and 60min), with a concomitant increase in the level of c-Src expression and phosphorylation, suggesting that FAK/Src act as an integrated signaling pathway that coordinates parasite entry. These data provide novel insights into the signaling pathways that are involved in cardiomyocyte invasion by T. cruzi. A better understanding of the signal transduction networks involved in T. cruzi invasion may contribute to the development of more effective therapies for the treatment of Chagas' disease.


Assuntos
Quinase 1 de Adesão Focal/fisiologia , Miócitos Cardíacos/parasitologia , Transdução de Sinais/fisiologia , Trypanosoma cruzi/fisiologia , Quinases da Família src/fisiologia , Animais , Proteína Tirosina Quinase CSK , Quinase 1 de Adesão Focal/antagonistas & inibidores , Quinase 1 de Adesão Focal/metabolismo , Técnicas de Silenciamento de Genes , Camundongos , Fosforilação , Pirazóis/farmacologia , Pirimidinas/farmacologia , Quinolonas/farmacologia , RNA Interferente Pequeno/fisiologia , Sulfonas/farmacologia , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
5.
PLoS One ; 8(3): e59347, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23527169

RESUMO

Chagas' disease is a major public health problem affecting nearly 10 million in Latin America. Despite several experimental vaccines have shown to be immunogenic and protective in mouse models, there is not a current vaccine being licensed for humans or in clinical trial against T. cruzi infection. Towards this goal, we used the backbone of Yellow Fever (YF) 17D virus, one of the most effective and well-established human vaccines, to express an immunogenic fragment derived from T. cruzi Amastigote Surface Protein 2 (ASP-2). The cDNA sequence of an ASP-2 fragment was inserted between E and NS1 genes of YF 17D virus through the construction of a recombinant heterologous cassette. The replication ability and genetic stability of recombinant YF virus (YF17D/ENS1/Tc) was confirmed for at least six passages in Vero cells. Immunogenicity studies showed that YF17D/ENS1/Tc virus elicited neutralizing antibodies and gamma interferon (IFN-γ) producing-cells against the YF virus. Also, it was able to prime a CD8(+) T cell directed against the transgenic T. cruzi epitope (TEWETGQI) which expanded significantly as measured by T cell-specific production of IFN-γ before and after T. cruzi challenge. However, most important for the purposes of vaccine development was the fact that a more efficient protective response could be seen in mice challenged after vaccination with the YF viral formulation consisting of YF17D/ENS1/Tc and a YF17D recombinant virus expressing the TEWETGQI epitope at the NS2B-3 junction. The superior protective immunity observed might be due to an earlier priming of epitope-specific IFN-γ-producing T CD8(+) cells induced by vaccination with this viral formulation. Our results suggest that the use of viral formulations consisting of a mixture of recombinant YF 17D viruses may be a promising strategy to elicit protective immune responses against pathogens, in general.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Doença de Chagas/prevenção & controle , Neuraminidase/genética , Trypanosoma cruzi/genética , Vacinas de DNA/imunologia , Vírus da Febre Amarela/genética , Vírus da Febre Amarela/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Chlorocebus aethiops , Imunofluorescência , Interferon gama/imunologia , Camundongos , Estatísticas não Paramétricas , Trypanosoma cruzi/imunologia , Vacinas de DNA/genética , Células Vero
7.
Biotechnol Lett ; 34(9): 1623-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22576283

RESUMO

The VP6 protein of rotavirus A (RVA) is a target antigen used for diagnostic assays and also for the development of new RVA vaccines. We have compared the expression of VP6 protein in human embryonic kidney (HEK293-T) cells with results obtained using a well-established insect cell-baculovirus system. The recombinant VP6 (rVP6) expressed in HEK293-T cells did not present degradation and also retained the ability to form trimers. In the insect cell-baculovirus system, rVP6 was expressed at higher levels and with protein degradation as well as partial loss of ability to form trimers was observed. Therefore, HEK293-T cells represent a less laborious alternative system than insect cells for expression of rVP6 from human RVA.


Assuntos
Antígenos Virais/biossíntese , Antígenos Virais/isolamento & purificação , Biotecnologia/métodos , Proteínas do Capsídeo/biossíntese , Proteínas do Capsídeo/isolamento & purificação , Expressão Gênica , Animais , Antígenos Virais/genética , Baculoviridae/genética , Proteínas do Capsídeo/genética , Linhagem Celular , Vetores Genéticos , Células HEK293 , Humanos , Insetos , Proteólise , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Rotavirus/genética
8.
Virol J ; 8: 127, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21418577

RESUMO

BACKGROUND: The attenuated Yellow fever (YF) 17D vaccine virus is one of the safest and most effective viral vaccines administered to humans, in which it elicits a polyvalent immune response. Herein, we used the YF 17D backbone to express a Trypanosoma cruzi CD8+ T cell epitope from the Amastigote Surface Protein 2 (ASP-2) to provide further evidence for the potential of this virus to express foreign epitopes. The TEWETGQI CD8+ T cell epitope was cloned and expressed based on two different genomic insertion sites: in the fg loop of the viral Envelope protein and the protease cleavage site between the NS2B and NS3. We investigated whether the site of expression had any influence on immunogenicity of this model epitope. RESULTS: Recombinant viruses replicated similarly to vaccine virus YF 17D in cell culture and remained genetically stable after several serial passages in Vero cells. Immunogenicity studies revealed that both recombinant viruses elicited neutralizing antibodies to the YF virus as well as generated an antigen-specific gamma interferon mediated T-cell response in immunized mice. The recombinant viruses displayed a more attenuated phenotype than the YF 17DD vaccine counterpart in mice. Vaccination of a mouse lineage highly susceptible to infection by T. cruzi with a homologous prime-boost regimen of recombinant YF viruses elicited TEWETGQI specific CD8+ T cells which might be correlated with a delay in mouse mortality after a challenge with a lethal dose of T. cruzi. CONCLUSIONS: We conclude that the YF 17D platform is useful to express T. cruzi (Protozoan) antigens at different functional regions of its genome with minimal reduction of vector fitness. In addition, the model T. cruzi epitope expressed at different regions of the YF 17D genome elicited a similar T cell-based immune response, suggesting that both expression sites are useful. However, the epitope as such is not protective and it remains to be seen whether expression of larger domains of ASP-2, which include the TEWETGQI epitope, will elicit better T-CD8+ responses to the latter. It is likely that additional antigens and recombinant virus formulations will be necessary to generate a protective response.


Assuntos
Doença de Chagas/imunologia , Epitopos de Linfócito T/imunologia , Expressão Gênica , Vetores Genéticos/genética , Neuraminidase/genética , Neuraminidase/imunologia , Vírus da Febre Amarela/genética , Animais , Doença de Chagas/parasitologia , Doença de Chagas/prevenção & controle , Chlorocebus aethiops , Epitopos de Linfócito T/genética , Feminino , Vetores Genéticos/imunologia , Genoma Viral , Humanos , Camundongos , Camundongos Endogâmicos A , Trypanosoma cruzi/genética , Trypanosoma cruzi/imunologia , Células Vero , Vírus da Febre Amarela/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...