Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Analyst ; 149(1): 244-253, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38032357

RESUMO

Fast detection of contaminants of emerging concern (CECs) in water resources is of great environmental interest. Ideally, sustainable materials should be used in water quality monitoring technologies implemented for such purposes. In this regard, the application of bio-based materials aimed at the fabrication of analytical platforms has become of great importance. This research merges both endeavors by exploring the application of chitosan-coated paper, decorated with silver nanoparticles (AgNPs), on surface-enhanced Raman scattering (SERS) spectroscopy studies of two distinct types of CECs dissolved in aqueous samples: an antibiotic (ciprofloxacin) and a pesticide (thiram). Our results indicate the superior SERS performance of biocoated substrates compared to their non-coated paper counterparts. The detection limits achieved for thiram and ciprofloxacin using the biocoated substrates were 0.024 ppm and 7.7 ppm, respectively. The efficient detection of both analytes is interpreted in terms of the role of the biopolymer in promoting AgNPs assemblies that result in local regions of enhanced SERS activity. Taking advantage of these observations, we use confocal Raman microscopy to obtain Raman images of the substrates using ciprofloxacin and thiram as molecular probes. We also demonstrate that these biobased substrates can be promising for on-site analysis when used in conjunction with portable Raman instruments.


Assuntos
Quitosana , Nanopartículas Metálicas , Tiram/análise , Prata/química , Análise Espectral Raman/métodos , Ciprofloxacina , Nanopartículas Metálicas/química
3.
Front Chem ; 10: 1011186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238095

RESUMO

Water is the most important resource for all kind forms of live. It is a vital resource distributed unequally across different regions of the globe, with populations already living with water scarcity, a situation that is spreading due to the impact of climate change. The reversal of this tendency and the mitigation of its disastrous consequences is a global challenge posed to Humanity, with the scientific community assuming a major obligation for providing solutions based on scientific knowledge. This article reviews literature concerning the development of nanomaterials for water purification technologies, including collaborative scientific research carried out in our laboratory (nanoLAB@UA) framed by the general activities carried out at the CICECO-Aveiro Institute of Materials. Our research carried out in this specific context has been mainly focused on the synthesis and surface chemical modification of nanomaterials, typically of a colloidal nature, as well as on the evaluation of the relevant properties that arise from the envisaged applications of the materials. As such, the research reviewed here has been guided along three thematic lines: 1) magnetic nanosorbents for water treatment technologies, namely by using biocomposites and graphite-like nanoplatelets; 2) nanocomposites for photocatalysis (e.g., TiO2/Fe3O4 and POM supported graphene oxide photocatalysts; photoactive membranes) and 3) nanostructured substrates for contaminant detection using surface enhanced Raman scattering (SERS), namely polymers loaded with Ag/Au colloids and magneto-plasmonic nanostructures. This research is motivated by the firm believe that these nanomaterials have potential for contributing to the solution of environmental problems and, conversely, will not be part of the problem. Therefore, assessment of the impact of nanoengineered materials on eco-systems is important and research in this area has also been developed by collaborative projects involving experts in nanotoxicity. The above topics are reviewed here by presenting a brief conceptual framework together with illustrative case studies, in some cases with original research results, mainly focusing on the chemistry of the nanomaterials investigated for target applications. Finally, near-future developments in this research area are put in perspective, forecasting realistic solutions for the application of colloidal nanoparticles in water cleaning technologies.

4.
Chemistry ; 28(61): e202203093, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36253142

RESUMO

Invited for the cover of this issue is the group of Tito Trindade and colleagues at the University of Aveiro. The image depicts dendritic magneto-plasmonic substrates for surface-enhanced Raman scattering (SERS) detection. Read the full text of the article at 10.1002/chem.202202382.


Assuntos
Nanoestruturas , Análise Espectral Raman , Análise Espectral Raman/métodos , Nanoestruturas/química
5.
Chemistry ; 28(61): e202202382, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36083195

RESUMO

Chemical analyses in the field using surface-enhanced Raman scattering (SERS) protocols are expected to be part of several analytical procedures applied to water quality monitoring. To date, these endeavors have been supported by developments in SERS substrate nanofabrication, instrumentation portability, and the internet of things. Here, we report distinct chemical strategies for preparing magneto-plasmonic (Fe3 O4 : Au) colloids, which are relevant in the context of trace-level detection of water contaminants due to their inherent multifunctionality. The main objective of this research is to investigate the role of poly(amidoamine) dendrimers (PAMAMs) in the preparation of SERS substrates integrating both functionalities into single nanostructures. Three chemical routes were investigated to design magneto-plasmonic nanostructures that translate into different ways for assessing SERS detection by using distinct interfaces. Hence, a series of magneto-plasmonic colloids have been characterized and then assessed for their SERS activity by using a model pesticide (thiram) dissolved in aqueous samples.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Análise Espectral Raman/métodos , Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Tiram/análise
6.
Phys Chem Chem Phys ; 24(32): 19502-19511, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35938321

RESUMO

Anhydrous carbamazepine (CBZ) is an anti-convulsant drug commonly used to treat epilepsy and relieve trigeminal neuralgia. The presence of the dihydrate form in commercial CBZ tablets can change the dissolution rate of the active pharmaceutical ingredient (API), thus decreasing its activity. The hydration transformation can occur during wet granulation or storage, within a few weeks, depending on the ambient conditions. This work aims to investigate the effect of relative humidity (RH) in the transition of pure anhydrous CBZ (CBZ III) into the hydrate form by using confocal Raman microscopy with cluster analysis (CA). Firstly, several tablets of pure CBZ III containing different amounts of CBZ DH (50%, 10%, 1%, 0.5%) were prepared and analyzed by Raman imaging with CA. Our results show that CBZ DH crystals can be detected in the CBZ III tablets, at as low a concentration as 0.5%, giving distinct Raman features for the analysed polymorphs. The stability of pure anhydrous (CBZ III) tablets was then monitored by Raman imaging at room temperature (20-22 °C) and different RH (6%, 60% and 89%). The Raman imaging with CA showed that the anhydrous CBZ tablets start to convert into the hydrate form after 48 h, and it completely changes after 120 hours (5 days) at RH 89%. The tablets exposed to RH 6% and 60% did not demonstrate the presence of CBZ DH after 1 week of exposure. The exposure time was extended for 9 months in the former, and no CBZ DH was observed. A comparative study using IR imaging was also performed, demonstrating the viability of these vibrational imaging techniques as valuable tools to monitor the hydration process of active pharmaceutical ingredients.


Assuntos
Carbamazepina , Carbamazepina/análise , Carbamazepina/química , Cristalização , Solubilidade , Comprimidos
7.
Int J Pharm ; 617: 121632, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35245634

RESUMO

Raman imaging methods have appeared in the last years as a powerful approach to monitoring the quality of pharmaceutical compounds. Because polymorphism occurs in many crystalline pharmaceutical compounds, it is essential to monitor polymorphic transformations induced by different external stimulus, such as temperature changes, to which those compounds may be submitted. Raman imaging with k-means cluster analysis (CA) is used here as an essential technique to investigate structural and chemical transformations occurring in carbamazepine p-monoclinic (CBZ III) into carbamazepine triclinic (CBZ I) when submitted to temperatures near the melting point of CBZ III (178 °C) and CBZ I (193 °C). CBZ III commercial powder and laboratorial prepared CBZ I were analyzed by differential scanning calorimetry, powder X-ray diffraction and Raman spectroscopy with variable temperature. After thermal treatment, the resultant CBZ powder was evaluated by Raman imaging, in which all imaging data was analyzed using CA. Raman imaging allowed the identification of different polymorphs of CBZ (CBZ III and CBZ I) and iminostilbene (IMS), a degradation product of CBZ, in the treated samples, depending on the heating treatment method.


Assuntos
Carbamazepina , Análise Espectral Raman , Varredura Diferencial de Calorimetria , Carbamazepina/química , Cristalização/métodos , Pós , Solubilidade , Difração de Raios X
8.
J Colloid Interface Sci ; 612: 342-354, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34998194

RESUMO

Research on paper substrates prepared by inkjet deposition of metal nanoparticles for sensing applications has become a hot topic in recent years; however, the design of such substrates based on the deposition of alloy nanoparticles remains less explored. Herein, we report for the first time the inkjet printing of dendrimer-stabilized colloidal metal nanoalloys for the preparation of paper substrates for surface-enhanced Raman scattering (SERS) spectroscopy. To this end, nanoassemblies containing variable molar ratios of Au:Ag were prepared in the presence of poly(amidoamine) dendrimer (PAMAM), resulting in plasmonic properties that depend on the chemical composition of the final materials. The dendrimer-stabilized Au:Ag:PAMAM colloids exhibit high colloidal stability, making them suitable for the preparation of inks for long-term use in inkjet printing of paper substrates. Moreover, the pre-treatment of paper with a polystyrene (PS) aqueous emulsion resulted in hydrophobic substrates with improved SERS sensitivity, as illustrated in the analytical detection of tetramethylthiuram disulfide (thiram pesticide) dissolved in aqueous solutions. We suggest that the interactions established between the two polymers (PAMAM and PS) in an interface region over the cellulosic fibres, resulted in more exposed metallic surfaces for the adsorption of the analyte molecules. The resulting hydrophobic substrates show long-term plasmonic stability with high SERS signal retention for at least ninety days.


Assuntos
Dendrímeros , Nanopartículas Metálicas , Prata , Análise Espectral Raman , Propriedades de Superfície
9.
Macromol Biosci ; 22(1): e2100311, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610190

RESUMO

Biomimetics offers excellent prospects for design a novel generation of improved biomaterials. Here the controlled integration of graphene oxide (GO) derivatives with a 3D marine spongin (MS) network is explored to nanoengineer novel smart bio-based constructs for bone tissue engineering. The results point out that 3D MS surfaces can be homogeneously coated by layer-by-layer (LbL) assembly of oppositely charged polyethyleneimine (PEI) and GO. Notably, the GOPEI@MS bionanocomposites present a high structural and mechanical stability under compression tests in wet conditions (shape memory). Dynamic mechanically (2 h of sinusoidal compression cyclic interval (0.5 Hz, 0-10% strain)/14 d) stimulates GOPEI@MS seeded with osteoblast (MC3T3-E1), shows a significant improvement in bioactivity, with cell proliferation being two times higher than under static conditions. Besides, the dynamic assays show that GOPEI@MS bionanocomposites are able to act as mechanical stimulus-responsive scaffolds able to resemble physiological bone extracellular matrix (ECM) requirements by strongly triggering mineralization of the bone matrix. These results prove that the environment created by the system cell-GOPEI@MS is suitable for controlling the mechanisms regulating mechanical stimulation-induced cell proliferation for potential in vivo experimentation.


Assuntos
Grafite , Alicerces Teciduais , Biomimética , Grafite/química , Grafite/farmacologia , Osteoblastos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
10.
ChemSusChem ; 14(14): 3018-3026, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34087058

RESUMO

An acidic aqueous biphasic system (AcABS) presenting a desired and reversible phase transition with HNO3 concentration and temperature was developed herein as an integrated platform for metal separation. The simple, economical, and fully incinerable (C,H,O,N) AcABS composed of tetrabutylammonium nitrate ([N4444 ][NO3 ])+HNO3 +H2 O was characterized and presented an excellent selectivity towards CeIV against other rare earth elements and transition metals from both synthetic solutions and nickel metal hydride (NiMH) battery leachates. The acid-driven self-assembly of AcABS bridges the gap between traditional ABS and liquid-liquid extraction whilst retaining their advantageous qualities, including compatibility with highly acidic solutions, water as the primary system component, the avoidance of organic diluents, rapid mass transfer, and the potential integration of the leaching and separation steps.

11.
Anal Methods ; 12(18): 2407-2421, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32930267

RESUMO

This paper proposes for the first time: (a) a qualitative analytical method based on portable and benchtop backscattering Raman spectrometers coupled to hierarchical cluster analysis (HCA) and multivariate curve resolution - alternating least-squares (MCR-ALS) to identify two polymorphs of antimalarial quinine sulfate in commercial pharmaceutical tablets in their intact forms and (b) a quantitative analytical method based on gold nanoparticles (AuNPs) as active substrates for surface-enhanced Raman scattering (SERS) in combination with MCR-ALS to quantify quinine sulfate in commercial pharmaceutical tablets in solution. The pure concentration and spectral profiles recovered by MCR-ALS proved that both formulations present different polymorphs. These results were also confirmed by two clusters observed in the HCA model, according to their similarities within and among the samples that provided useful information about the homogeneity of different pharmaceutical manufacturing processes. AuNPs-SERS coupled to MCR-ALS was able to quantify quinine sulfate in the calibration range from 150.00 to 200.00 ng mL-1 even with the strong overlapping spectral profile of the background SERS signal, proving that it is a powerful ultrahigh sensitivity analytical method. This reduced linearity was validated throughout a large calibration range from 25.00 to 175.00 µg mL-1 used in a reference analytical method based on high performance liquid chromatography with a diode array detector (HPLC-DAD) coupled to MCR-ALS for analytical validation purposes, even in the presence of a coeluted compound. The analytical methods developed herein are fast, because second-order chromatographic data and first-order SERS spectroscopic data were obtained in less than 6 and 2 min, respectively. Concentrations of quinine sulfate were estimated with low root mean square error of prediction (RMSEP) values and a low relative error of prediction (REP%) in the range 1.8-4.5%.


Assuntos
Antimaláricos , Química Farmacêutica , Análise por Conglomerados , Quinina , Análise Espectral Raman , Antimaláricos/análise , Química Farmacêutica/instrumentação , Química Farmacêutica/métodos , Ouro/química , Nanopartículas Metálicas/química , Análise Multivariada , Quinina/análise , Quinina/química , Análise Espectral Raman/instrumentação
12.
J Environ Sci (China) ; 92: 38-51, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32430132

RESUMO

Several methods have been used to tailor nanomaterials structure and properties. Sometimes, slight changes in the structure outcomes expressive improvements in the optical and photocatalytic properties of semiconductor nanoparticles. In this context, the influence of the metal doping and the morphology on a catalyst performance was studied in this work. Here, ruthenium doped titanate nanotubes (RuTNT) were synthesised for the first time using an amorphous Ru-containing precursor. Afterwards, the photocatalytic performance of this sample was compared to the one obtained for ruthenium titanate nanowires (RuTNW), recently reported. Two samples, RuTNW and RuTNT, were produced using the same Ru-containing precursor but distinct hydrothermal methodologies. The powders were structural, morphological and optical characterized by X-ray diffraction and fluorescence, transmission electron microscopy, Raman, X-ray photoelectron and photoluminescence spectroscopies. Distinct variations on the structural and optical properties of the RuTNT and RuTNW nanoparticles, due to ruthenium incorporation were observed. Their potential use as photocatalysts was evaluated on the hydroxyl radical photo-assisted production. Both samples were catalytic for this reaction, presenting better performances than the pristine counterparts, being RuTNT the best photocatalyst. Subsequently, the degradation of two emergent pollutants, caffeine and sulfamethazine, was studied. RuTNT demonstrated to be better photocatalyst than RuTNW for caffeine but identical performances were obtained for sulfamethazine. For both catalysts, the degradation mechanism of the pollutants was explored through the identification and quantification of the intermediate compounds produced and several differences were found. This indicates the importance of the structural and morphological aspects of a material on its catalytic performance.


Assuntos
Poluentes Ambientais , Nanotubos , Nanofios , Rutênio , Catálise , Titânio
13.
Mater Sci Eng C Mater Biol Appl ; 94: 426-436, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423726

RESUMO

Advances on the fabrication of sintering-free biphasic calcium phosphate (BCP)/natural polymer composite scaffolds using robocasting as additive manufacturing technique are presented in the present work. Inks with high amounts of BCP powders (45 vol%) containing different HA/ß-TCP ratios, in presence of crosslinked polymer, were successfully fine-tuned for extrusion by robocasting. The non-existence of sintering step opened the possibility to obtain drug loaded scaffolds by adding levofloxacin to the extrudable inks. The drug presence induced slightly changes on the rheological behaviour of the inks, more emphasized for the BCP compositions with higher amounts of ß-TCP, and consequently, on the microstructure and on the mechanical properties of the final scaffolds. The strong interaction of ß-TCP with chitosan difficult the preparation of suitable rheological inks for printing. Drug delivery studies revealed a fast release of levofloxacin with a high burst of drug within the first 30 min. Levofloxacin loaded samples also presented bacteria growth inhibition ability, proving that antibiotic was not degraded during the fabrication process and its bactericidal efficacy was preserved. From the results obtained, the composite scaffolds containing higher amounts of HA (around 80% HA/20% ß-TCP) constitute a promising bi-functional synthetic bone substitute for simultaneous local bone regeneration and infection treatments.


Assuntos
Regeneração Óssea/fisiologia , Sistemas de Liberação de Medicamentos , Alicerces Teciduais/química , Regeneração Óssea/efeitos dos fármacos , Contagem de Células , Morte Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Módulo de Elasticidade , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Imageamento Tridimensional , Recém-Nascido , Levofloxacino/farmacologia , Testes de Sensibilidade Microbiana , Pós , Análise Espectral Raman , Staphylococcus aureus/efeitos dos fármacos , Temperatura , Viscosidade
14.
Nanomaterials (Basel) ; 9(1)2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30591645

RESUMO

Magnetite nanoparticles (MNPs) decorated with gold nanostars (AuNSs) have been prepared by using a seed growth method without the addition of surfactants or colloidal stabilizers. The hybrid nanomaterials were investigated as adsorbents for the uptake of tetracycline (TC) from aqueous solutions and subsequent detection using surface-enhanced Raman scattering (SERS). Several parameters were investigated in order to optimize the performance of these hybrid platforms on the uptake and SERS detection of TC, including variable pH values and the effect of contact time on the removal of TC. The spatial distribution of TC and AuNS on the hybrid composites was accomplished by coupling SERS analysis with Raman imaging studies, allowing also for the determination of the detection limit for TC when dissolved in ultrapure water (10 nM) and in more complex aqueous matrices (1 µM). Attempts were also made to investigate the adsorption modes of the TC molecules at the surface of the metal NPs by taking into account the enhancement of the Raman bands in these different matrices.

15.
ACS Omega ; 3(4): 4331-4341, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31458659

RESUMO

A series of nanocomposites based on polyamide (NL16, PA) filter membranes containing metal nanoparticles (NPs) have been prepared by filtration under reduced pressure of the metal colloids. The ensuing materials were then investigated as substrates for surface-enhanced Raman scattering (SERS) imaging studies envisaging the spectroscopic detection of vestigial organic pollutants dissolved in contaminated water. The organic dye crystal violet (CV) was used here as a model pollutant because it is a hazardous compound present in certain effluent waters. Moreover this compound is well-known for its strong SERS activity, which is clearly advantageous in the context of material development for SERS. Indeed, several preparative strategies were employed to prepare PA-based composites, and the impact on SERS detection was investigated. These include the use of chemical and morphological distinct plasmonic NPs (Ag, Au), a variable metal load and changing the order of addition of the analytical specimens. These studies demonstrate that the parameters employed in the fabrication of the SERS substrates have a strong impact on the Raman signal enhancement. The use of Raman imaging during the fabrication process allows establishing improvements that translate to better performances of the substrates in the analyte detection. The results have been interpreted by considering an integrated set of operational parameters that include the affinity of CV molecules to the substrate, amount and dispersion of NPs in the PA membranes, and the detection method.  Noteworthy the use of SERS analysis assisted with Raman imaging allowed achieving a detection limit for CV as low as 100 aM in ultrapure water and 10 fM in real samples.

16.
Carbohydr Polym ; 175: 303-310, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28917870

RESUMO

In this work bleached E. globulus kraft pulp was doped with polyhexamethylene biguanide (PHMB) from an aqueous solution or from a suspension of silica capsules (PHMB@silica) by impregnation under atmospheric or ultra-high pressure (UHP) conditions (500MPa). The antimicrobial properties of pulps were evaluated towards gram-negative E. coli and gram-positive L. innocua bacteria. PHMB loads below 500mg per kg of pulp revealed negligible bacteriostatic properties, whereas PHMB loads of ca 3000-4000mg per kg demonstrated bactericidal properties of pulp without significant deterioration of its mechanical strength. The UHP impregnation allowed significant improvement of PHMB uptake. Thus, under equal conditions, PHMB uptake was ca 25% greater under UHP than under atmospheric pressure impregnation, whereas the leachable amounts of PHMB in both pulps were comparable. The sorption of PHMB@silica on pulp in suspension under UHP conditions was ca 17% greater than under atmospheric pressure with almost 70% increase of leachable PHMB.


Assuntos
Antibacterianos/química , Biguanidas/química , Celulose/química , Carboidratos , Escherichia coli , Bactérias Gram-Positivas , Pressão
17.
Phys Chem Chem Phys ; 19(8): 6113-6129, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28191580

RESUMO

Triazoles are well-known organic corrosion inhibitors of copper. 1H-1,2,3-Triazole and 1,2,4-triazole, two very simple molecules with the only difference being the positions of the nitrogen atoms in the triazole ring, were studied in this work as corrosion inhibitors of copper in 50 mM NaCl solution using a set of electrochemical and analytical techniques. The results of electrochemical tests indicate that 1H-1,2,3-triazole exhibited superior inhibitor properties but could not suppress anodic copper dissolution at moderate anodic potentials (>+300 mV SCE), while 1,2,4-triazole, although it exhibited higher anodic currents, suppressed anodic copper dissolution at very anodic potentials. Density functional theory calculations were also performed to interpret the measured data and trends observed in the electrochemical studies. The computational studies considered either the inhibitors isolated in the gaseous phase or adsorbed onto Cu(111) surface models. From the calculations, the mechanisms of the inhibitive effects of both triazoles were established and plausible mechanisms of formation of the protective films on the Cu surface were proposed. The results of this study hold positive implications for research in the areas of catalysis, and copper content control in water purification systems.

18.
Phys Chem Chem Phys ; 17(33): 21046-71, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25960180

RESUMO

This review focuses on recent developments in hybrid and nanostructured substrates for SERS (surface-enhanced Raman scattering) studies. Thus substrates composed of at least two distinct types of materials, in which one is a SERS active metal, are considered here aiming at their use as platforms for chemical detection in a variety of contexts. Fundamental aspects related to the SERS effect and plasmonic behaviour of nanometals are briefly introduced. The materials described include polymer nanocomposites containing metal nanoparticles and coupled inorganic nanophases. Chemical approaches to tailor the morphological features of these substrates in order to get high SERS activity are reviewed. Finally, some perspectives for practical applications in the context of chemical detection of analytes using such hybrid platforms are presented.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 137: 547-59, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25240828

RESUMO

FT-IR and FT-Raman spectra of Opipramol were recorded and analyzed. SERS spectrum was recorded in silver colloid. The vibrational wave numbers were computed using DFT quantum chemical calculations. The data obtained from wave number calculations are used to assign vibrational bands obtained in infrared and Raman spectra as well as in SERS of the studied molecule. Potential energy distribution was done using GAR2PED program. The geometrical parameters (DFT) of the title compound are in agreement with the XRD results. The presence of CH2 stretching modes in the SERS spectrum indicates the close of piperazine ring with the metal surface and the interaction of the silver surface with this moiety. NBO analysis, HOMO-LUMO, first hyperpolarizability and molecular electrostatic potential results are also reported. The inhibitor Opipramol forms a stable complex with P4502C9 as is evident from the ligand-receptor interactions and a -9.0 kcal/mol docking score and may be an effective P4502C9 inhibitor if further biological explorations are carried out.


Assuntos
Opipramol/química , Domínio Catalítico , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Ligação de Hidrogênio , Ligantes , Simulação de Acoplamento Molecular , Conformação Proteica , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral , Análise Espectral Raman , Eletricidade Estática , Vibração , Difração de Raios X
20.
Artigo em Inglês | MEDLINE | ID: mdl-24200648

RESUMO

FT-IR, FT-Raman and surface enhanced Raman scattering spectra of cyclobenzaprinium salicylate were recorded and analyzed. The vibrational wavenumbers were examined theoretically using the Gaussian09 set of quantum chemistry codes, and the normal modes were assigned by potential energy distribution calculations. The downshift of the OH stretching frequency is due to strong hydrogen bonded system present in the title compound as given by XRD results. The presence of CH3, CH2 and CO2 modes in the SERS spectrum indicates the nearness of the methyl group to the metal surface which affects the orientation and metal molecule interaction. The presence of phenyl ring modes in the SERS spectrum indicates a tilted orientation with respect to the metal surface. The geometrical parameters of the title compound are in agreement with XRD results. A computation of the first hyperpolarizability indicates that the compound may be a good candidate as a NLO material.


Assuntos
Salicilatos/química , Modelos Moleculares , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...