Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 864: 161073, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36572307

RESUMO

Information about biotic interactions (e.g. competition, predation, parasitism, diseases, mutualism, allelopathy) is fundamental to better understand species distribution and abundance, ecosystem functioning, and ultimately guide conservation efforts. However, conservation planning often overlooks these important interactions. Here, we aim to demonstrate a new framework to include biotic interactions into Marxan. For that, we use freshwater mussels and fish interaction (as mussels rely on fishes to complete their life cycle) in the Douro River basin (Iberian Peninsula) as a case study. While doing that, we also test the importance of including biotic interactions into conservation planning exercises, by running spatial prioritisation analysis considering either: 1) only the target species (freshwater mussels); 2) freshwater mussels and their obligatory hosts (freshwater fishes); 3) freshwater mussels, fishes and their interactions. With this framework we found that biotic interactions tend to be underrepresented when the data on both freshwater mussels and fishes is not simultaneously included in the spatial prioritisation. Overall, the priority areas selected across all scenarios are mostly located in the western part of the Douro River basin, where most freshwater mussels and fishes still occur. Given the low overlap of priority areas identified here and the current Natura 2000 network, our approach may be useful for establishing (or enlarging) protected areas, especially in light of the EU Biodiversity Strategy for 2030. Also, this work may provide guidance for future habitat restoration and management of main threats to freshwater biodiversity.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Biodiversidade , Água Doce , Rios , Peixes
2.
Conserv Biol ; 37(2): e13994, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36047704

RESUMO

Europe has a long history of human pressure on freshwater ecosystems. As pressure continues to grow and new threats emerge, there is an urgent need for conservation of freshwater biodiversity and its ecosystem services. However, whilst some taxonomic groups, mainly vertebrates, have received a disproportionate amount of attention and funds, other groups remain largely off the public and scientific radar. Freshwater mussels (Bivalvia, Unionida) are an alarming example of this conservation bias and here we point out six conceptual areas that need immediate and long-term attention: knowledge, threats, socioeconomics, conservation, governance and education. The proposed roadmap aims to advance research, policy and education by identifying the most pressing priorities for the short- and long-term conservation of freshwater mussels across Europe.


Assuntos
Bivalves , Ecossistema , Animais , Humanos , Conservação dos Recursos Naturais , Biodiversidade , Água Doce , Europa (Continente)
3.
Conserv Biol ; 35(5): 1367-1379, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34355419

RESUMO

Theidentification of key biodiversity areas (KBA) was initiated by the International Union for Conservation of Nature in 2004 to overcome taxonomic biases in the selection of important areas for conservation, including freshwater ecosystems. Since then, several KBAs have been identified mainly based on the presence of trigger species (i.e., species that trigger either the vulnerability and or the irreplaceability criterion and thus identify a site as a KBA). However, to our knowledge, many of these KBAs have not been validated. Therefore, classical surveys of the taxa used to identify freshwater KBAs (fishes, molluscs, odonates, and aquatic plants) were conducted in Douro (Iberian Peninsula) and Sebou (Morocco) River basins in the Mediterranean Biodiversity Hotspot. Environmental DNA analyses were undertaken in the Moroccan KBAs. There was a mismatch between the supposed and actual presence of trigger species. None of the trigger species were found in 43% and 50% of all KBAs surveyed in the Douro and Sebou basins, respectively. Shortcomings of freshwater KBA identification relate to flawed or lack of distribution data for trigger species. This situation results from a misleading initial identification of KBAs based on poor (or even inaccurate) ecological information or due to increased human disturbance between initial KBA identification and the present. To improve identification of future freshwater KBAs, we suggest selecting trigger species with a more conservative approach; use of local expert knowledge and digital data (to assess habitat quality, species distribution, and potential threats); consideration of the subcatchment when delineating KBAs boundaries; thoughtful consideration of terrestrial special areas for conservation limits; and periodic field validation.


Alarming decline of freshwater trigger species in western Mediterranean Key Biodiversity Areas Resumen La identificación de las áreas clave de biodiversidad (ACB) fue iniciada por la Unión Internacional para la Conservación de la Naturaleza en 2004 con el objetivo de sobreponerse a los sesgos taxonómicos en la selección de áreas importantes para la conservación, incluyendo los ecosistemas de agua dulce. Desde entonces, varias ACB han sido identificadas principalmente con base en la presencia de especies desencadenantes (es decir, especies que desencadenan el criterio de vulnerabilidad o de carácter irremplazable y por lo tanto identifican a un sitio como una ACB). Sin embargo, a nuestro conocimiento, muchas de estas ACB no han sido validadas. Por lo tanto, los censos clásicos de taxones utilizados para identificar las ACB de agua dulce (peces, moluscos, odonatos y plantas acuáticas) fueron realizados en las cuencas de los ríos Duero (Península Ibérica) y Sebou (Marruecos) en el Punto Caliente de Biodiversidad del Mediterráneo. Realizamos análisis de ADN ambiental en las ACB de Marruecos. Hubo una discrepancia entre la supuesta presencia y la actual presencia de especies desencadenantes. Ninguna de las especies desencadenantes se encontró en 43% y 50% de las ACB censadas en las cuencas del Duero y del Sebou, respectivamente. Las deficiencias en la identificación de las ACB de agua dulce están relacionadas con la carencia de datos o datos erróneos sobre la distribución de las especies desencadenantes. Esta situación resulta en una identificación inicial engañosa de las ACB con base en información ecológica deficiente (o incluso incorrecta) o también puede deberse al incremento en las perturbaciones humanas ocurridas entre la identificación de la ACB y el presente. Para mejorar la identificación de ACB de agua dulce en el futuro, sugerimos que la selección de especies desencadenantes se realice con un enfoque más conservador; que se usen el conocimiento local de los expertos y los datos digitales (para evaluar la calidad del hábitat, la distribución de las especies y las amenazas potenciales); que se consideren las subcuencas cuando se delimiten las fronteras de las ACB; que se consideren cuidadosamente las áreas de especies terrestres para los límites de conservación; y que se realicen validaciones periódicas de campo.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Biodiversidade , Peixes , Água Doce , Humanos
4.
Sci Total Environ ; 739: 140047, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32540670

RESUMO

European freshwater pearl mussel (Margaritifera margaritifera) populations are declining despite a growing effort to conserve them. Here we used a combination of local ecological knowledge (LEK) and field sampling to assess past and current distribution and conservation status of this endangered species in Cávado and Neiva Rivers (Portugal). We performed face-to-face interviews in both rivers and sampled the entire area where the respondents confirmed the historical presence of this species. Abiotic characterization, water quality and fish diversity were also assessed in both rivers. We found that freshwater pearl mussels are now possibly extinct in Cávado River but almost 50% of the respondents confirm its presence in the past, especially elders that lived in villages near its historical distribution. To the contrary, and although the species is still present in Neiva River, only 3.8% of the respondents remembered its presence in the past. In both rivers, respondents suggested pollution as the most important explanation for the freshwater pearl mussels decline. However, nowadays both rivers present excellent water quality and trout Salmo trutta (the freshwater pearl mussel fish host) is still abundant. Since we identified the areas where the species was present in a recent past, this information is vital for possible management actions with the aim of re-introduce or increase the abundance of M. margaritifera populations and/or for the rehabilitation of habitats in both rivers. We also highlight the vital importance of getting LEK, mainly from elders, in order to avoid shifting baseline syndromes and to get qualitative accurate information of past references and/or experience with historical conditions. Results reported here reinforce concern about the conservation status of freshwater pearl mussel populations in Portugal and can be used to guide future research and management initiatives to better conserve this species.


Assuntos
Bivalves , Espécies em Perigo de Extinção , Animais , Água Doce , Portugal , Rios
5.
Sci Total Environ ; 665: 329-337, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30772562

RESUMO

The freshwater pearl mussel Margaritifera margaritifera is a highly threatened species in Europe. Several mechanisms may be responsible for the decline in distribution and abundance of European pearl mussel populations, but almost no quantitative data exists about the possible negative impacts of invasive alien species (IAS). In this study, we clearly demonstrate that the invasive signal crayfish Pacifastacus leniusculus predates pearl mussels, using a laboratorial experiment followed by in situ validation in four rivers in the North of Portugal (Mente, Rabaçal, Tuela and Baceiro Rivers; Douro Basin). In the laboratory, the crayfish had a clear preference for small-sized pearl mussels but no differences in predation were found in mesocosms with and without sediment. In addition, we clearly demonstrated that the signal crayfish predates pearl mussels in natural conditions and detected a significant density dependent effect (i.e., sites with more crayfish presented higher number of pearl mussel shells with marks of predation). Given the recent introduction of the signal crayfish and the potential negative impacts on pearl mussel populations we also investigated its autoecology (distribution, abundance, size structure and sex-ratio) in the four studied rivers. Significant differences in average abundance and size of the crayfish were detected between sites and the sex-ratio was highly skewed to females. In view of the widespread distribution of signal crayfish (and other invasive crayfish species) in Europe, future management actions devoted to the conservation of pearl mussels should take in consideration the possible negative effects of these predators, especially on juveniles.


Assuntos
Astacoidea/fisiologia , Bivalves/fisiologia , Espécies em Perigo de Extinção , Monitoramento Ambiental , Espécies Introduzidas , Animais , Portugal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...